精英家教网 > 高中数学 > 题目详情
6.设a>0,函数f(x)=cosx(2asinx-cosx)+sin2x的最大值为2.
(1)求函数f(x)的单调递减区间;
(2)设△ABC三内角A,B,C所对边分别为a,b,c且$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}-{c}^{2}}$=$\frac{c}{2a-c}$,求f(x)在[B,$\frac{π}{2}}$]上的值域.

分析 (1)化解f(x),根据最大值为2,求得a的值,利用辅助角公式求得f(x)的解析式,利用正弦函数的单调性求得f(x)的单调递减区间;
(2)利用余弦定理将$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}-{c}^{2}}$=$\frac{c}{2a-c}$化简,根据正弦定理求及两角和的正弦公式即可求得B的值,根据正弦函数的单调性,求得f(x)在[B,$\frac{π}{2}}$]上的值域.

解答 解:(1)f(x)=cosx(2asinx-cosx)+sin2x=asin2x-cos2x…(2分)
由$f{(x)_{max}}=\sqrt{{a^2}+1}=2$得,$a=\sqrt{3}$…(3分)
因此$f(x)=asin2x-cos2x=\sqrt{3}sin2x-cos2x=2sin(2x-\frac{π}{6})$…(4分)
令$\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{3π}{2}+2kπ,k∈Z$,
解得:$\frac{π}{3}+kπ≤x≤\frac{5π}{6}+kπ,k∈Z$,
故函数f(x)的单调递减区间$[{\frac{π}{3}+kπ,\frac{5π}{6}+kπ}](k∈Z)$…(6分)
(2)由余弦定理知:$\frac{{{a^2}+{c^2}-{b^2}}}{{{a^2}+{b^2}-{c^2}}}=\frac{2accosB}{2abcosC}=\frac{ccosB}{bcosC}=\frac{c}{2a-c}$即2acosB-ccosB=bcosC,…(8分)
又由正弦定理知:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R,
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
即$cosB=\frac{1}{2}$,
所以$B=\frac{π}{3}$….…(10分)
当$x∈[{\frac{π}{3},\frac{π}{2}}]$时,
$2x-\frac{π}{6}∈[{\frac{π}{2},\frac{5π}{6}}]$,f(x)∈[1,2],
故f(x)在[B,$\frac{π}{2}}$]上的值域为[1,2]….…(12分)

点评 本题考查三角恒等变换与正余弦定理相结合,考查正弦函数图象及性质,考查综合分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若(x+$\frac{1}{x}$)n的展开式中第3项与第7项的二项式系数相等,则该展开式中$\frac{1}{x^2}$的系数为(  )
A.32B.56C.63D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数f(x)对任意x1,x2(x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<0,且函数y=f(x-1)的图象关于(1,0)成中心对称,对于2≤s≤4,总存在t使不等式f(s2-2s)≤-f(2t-t2)成立,求t的取值范围是(  )
A.[0,2]B.(0,2)C.(-∞,-2]∪[4,+∞)D.[-2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若抛物线y2=2px上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为y2=8x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是30m,则河流的宽度BC等于(  )
A.$30(\sqrt{3}-1)m$B.$60(\sqrt{3}-1)m$C.$90(\sqrt{3}-1)m$D.$120(\sqrt{3}-1)m$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z=(m-1)+(m+1)i(i为虚数单位)为纯虚数,其中m∈R,则|z|=(  )
A.2B.4C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(-1<ξ<3)=(  )
A.0.683B.0.853C.0.954D.0.977

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)为定义在R上的可导函数,e为自然对数的底数.若f'(x)lnx>$\frac{f(x)}{x}$,则(  )
A.f(2)<f(e)ln2,2f(e)>f(e2B.f(2)<f(e)ln2,2f(e)<f(e2
C.f(2)>f(e)ln2,2f(e)<f(e2D.f(2)>f(e)ln2,2f(e)>f(e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定点M(-$\sqrt{2},0}$),N是圆C:(x-$\sqrt{2}}$)2+y2=16(C为圆心) 上的动点,MN的垂直平分线与NC交于点E.
(1)求动点E的轨迹方程C1
(2)直线l与轨迹C1交于P,Q两点,与抛物线C2:x2=4y交于A,B两点,且抛物线C2在点A,B处的切线垂直相交于S,设点S到直线l的距离为d,试问:是否存在直线l,使得d=$\sqrt{|{AB}|•|{PQ}|}$?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案