精英家教网 > 高中数学 > 题目详情

若椭圆C:数学公式的离心率e为数学公式,且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1)求椭圆C的方程;
(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;
(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k的值.

解:(1)由题意可得:抛物线y2=-12x的焦点(-3,0),
=,∴a=5,∴=4
∴椭圆C的方程为
(2)设Q(x,y),-5≤x≤5
∴|MQ|2=(x-2)2+y2=
∵对称轴为x=>5,∴x=5时,|MQ|2取得最小值
∴当|MQ|最小时,点Q的坐标为(5,0);
(3)设A(x1,y1),B(x2,y2),直线l:y=k(x-m)
直线代入椭圆方程,消去y可得(25k2+16)x2-50mk2x+25m2k2-400=0
∴x1+x2=,x1x2=
∴y1+y2=k(x1+x2)-2km=-,y1y2=
∴|PA|2+|PB|2=+=(k2+1)•
∵|PA|2+|PB|2的值仅依赖于k而与m无关,
∴512-800k2=0,解得k=
分析:(1)先求出焦点的坐标,再由离心率求得半长轴的长,从而得到短半轴长,即可写出椭圆的标准方程;
(2)用坐标表示出|MQ|2,利用配方法可得结论;
(3)设出直线方程,代入椭圆方程,利用韦达定理,表示出|PA|2+|PB|2,根据|PA|2+|PB|2的值仅依赖于k而与m无关,可得等式,从而可求k的值.
点评:本题考查椭圆的标准方程,考查配方法的运用,考查直线与椭圆的位置关系,考查学生的计算能力,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源:江苏省扬州中学2012届高三最后冲刺热身数学试题 题型:044

若椭圆C的离心率e,且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.

(1)求椭圆C的方程;

(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;

(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与AB两点,若|PA|2|PB|2的值仅依赖于k而与m无关,求k的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省高三高考模拟理科数学试卷(解析版) 题型:解答题

若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.

(1) 求椭圆C的方程;

(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;

(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与

A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省珠海四中高三(上)摸底数学试卷(文科)(解析版) 题型:解答题

椭圆C:的离心率e=,且过点P(1,).
(l)求椭圆C的方程;
(2)若斜率为1的直线l 与椭圆C交于A,B两点,O为坐标原点,且△OAB的面积为,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆C的离心率e,且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1)求椭圆C的方程;
(2)设点M(2,0),点Q是椭圆上一点,当|MQ|最小时,试求点Q的坐标;
(3)设P(m,0)为椭圆C长轴(含端点)上的一个动点,过P点斜率为k的直线l交椭圆与A,B两点,若|PA|2+|PB|2的值仅依赖于k而与m无关,求k的值.

查看答案和解析>>

同步练习册答案