【题目】已知平面内一动点()到点的距离与点到轴的距离的差等于1,
(1)求动点的轨迹的方程;
(2)过点的直线与轨迹相交于不同于坐标原点的两点,求面积的最小值.
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:经过点,椭圆C的离心率为.,是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】教材曾有介绍:圆上的点处的切线方程为.我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用.已知,直线与椭圆有且只有一个公共点.
(1)求的值
(2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且与交于点.当变化时,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,
甲:我不坐座位号为和的座位;
乙:我不坐座位号为和的座位;
丙:我的要求和乙一样;
丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.
那么坐在座位号为的座位上的是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程是
(Ⅰ)求直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设直线与曲线相交于两点,当时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥S-ABCD中,底面ABCD为长方形,底面,其中,,的可能取值为:①;②;③;④;⑤
(1)求直线与平面所成角的正弦值;
(2)若线段CD上能找到点E,满足的点有两个,分别记为,,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的.在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样,对于直角坐标系内任意两点、定义它们之间的一种“距离”(“直角距离”):,请解决以下问题:
(1)求线段(,)上一点到原点的“距离”;
(2)求所有到定点的“距离”均为2的动点围成的图形的周长;
(3)在“欧式几何学”中有如下三个与“距离”有关的正确结论:
①平面上任意三点A,B,C,;
②平面上不在一直线上任意三点A,B,C,若,则是以为直角三角形
③平面上存在两个不同的定点A,B,若动点P满足,则动点P的轨迹是的垂直平分线
上述结论对于“出租车几何学”中的直角距离是否还正确,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,圆:,直线:,直线过点,倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)写出直线与圆的交点极坐标及直线的参数方程;
(2)设直线与圆交于,两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com