精英家教网 > 高中数学 > 题目详情

已知正方体的棱长为.

(1)求异面直线所成角的大小;
(2)求四棱锥的体积.

(1);(2).

解析试题分析:这是最基本的立体几何题,计算异面直线所成的角和几何体的体积.(1)异面直线直线所成的角,主要是根据定义把两条异面直线中的一条平移到与另一条相交,则这两条相交直线所成的锐角或直角就是所求,正方体中平行线很多,不需要另外作辅助线,如,则(或其补角)就是所求异面直线所成的角.(2)这是求一个四棱锥的体积,为底面积乘高除以3,本题中四棱锥底面是正方形,高是,体积易求.
试题解析:(1)因为
直线所成的角就是异面直线所成角.
为等边三角形,
异面直线所成角的大小为.
(2)四棱锥的体积
考点:(1)异面直线所成的角;(2)棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC ­A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.

(1)证明:平面AEB⊥平面BB1C1C;
(2)证明:C1F∥平面ABE;
(3)设P是BE的中点,求三棱锥P ­B1C1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3.

(1)求证:BB1∥平面EFM;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.

(I)求三棱锥E—PAD的体积;
(II)试问当点E在BC的何处时,有EF//平面PAC;
(1lI)证明:无论点E在边BC的何处,都有PEAF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,矩形的对角线交于点G,AD⊥平面上的点,且BF⊥平面ACE

(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面的中点,.

(Ⅰ)求证://平面
(Ⅱ)设,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.

(1)证明:CB1⊥BA1
(2)已知AB=2,BC=,求三棱锥C1-ABA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.

(Ⅰ)证明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

同步练习册答案