精英家教网 > 高中数学 > 题目详情
已知点P,A,B,C,D都是直径为3的球O表面上的点,PA⊥平面ABCD,四边形ABCD是正方形,若PA=1,则几何体P-ABCD的体积为
4
3
4
3
分析:可将P,A,B,C,D补全为长方体ABCD-A′B′C′D′,让P与A′重合,则该长方体的对角线PC即为球O的直径(球O为该长方体的外接球),于是可求得PC的长度,进一步可求出底面边长,从而求几何体P-ABCD的体积.
解答:解:依题意,可将P,A,B,C,D补全为长方体ABCD-A′B′C′D′,让P与A′重合,
则球O为该长方体的外接球,长方体的对角线PC即为球O的直径.
设ABCD是边长为a,PA⊥平面ABCD,PA=1,
∴PC2=AP2+2AB2=1+2a2=32
∴a2=4,
则几何体P-ABCD的体积为V=
1
3
×a2×PA
=
4
3

故答案为:
4
3
点评:本题考查直线与平面垂直的性质,考查球内接多面体的应用,“补形”是关键,考查分析、转化与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁)已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2
3
正方形.若PA=2
6
,则△OAB的面积为
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2正方形.若PA=2
2
,则球O的体积为
32
3
π
32
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,A,B,C,D是球O的球面上的五点,正方形ABCD的边长为2
3
,PA⊥面ABCD,PA=2
6
,则此球的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,A,B,C是球O表面上的四个点,且PA,PB,PC两两成60°角,PA=PB=PC=4cm,则球的表面积为
 
cm2

查看答案和解析>>

同步练习册答案