精英家教网 > 高中数学 > 题目详情
5.函数f(x)=ax(a>0,a≠1)在区间[0,1]上的最大值与最小值的和为3,则实数a的值等于2.

分析 利用函数f(x)=ax(a>0,a≠1)在[0,1]上的单调性与f(x)在[0,1]上的最大值与最小值的和为3即可列出关于a的关系式,解之即可.

解答 解:∵函数f(x)=ax(a>0,a≠1)在[0,1]上的最大值与最小值的和为3,
∴a0+a1=3,
∴a=2.
故答案为:2.

点评 本题考查指数函数单调性的应用,得到a的关系式,是关键,考查分析与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知幂函数f(x)=xa的部分对应值如下表,则不等式|f(x)|≤2的解集是(0,4]

x

1
$\frac{1}{2}$
f(x)
1
$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.两条异面直线a,b所成角为60°,则过一定点P,与直线a,b都成60°角的直线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合M={x|x2-4x+3<0},N={x|log2x<1},则M∪N=(0,3),M∩N=(1,2),∁RM=(-∞,1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=4cos2$\frac{x}{2}$cos($\frac{π}{2}$-x)-2sinx-|ln(x+1)|的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不等式x2-ax-1≥0对x∈[1,3]恒成立,则实数a的取值范围为(  )
A.a≤0B.a≤$\frac{8}{3}$C.0$≤a≤\frac{8}{3}$D.a$≤0或a≥\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.椭圆$\frac{{x}^{2}}{4}$+y2=1的长轴长为(  )
A.4B.2C.1D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a},\overrightarrow{b}$是两个非零的平面向量,给出下列说法
①若$\overrightarrow{a}•\overrightarrow{b}$=0,则有$|\overrightarrow{a}+\overrightarrow{b|}=|\overrightarrow{a}-\overrightarrow{b}|$;②$|\overrightarrow{a}•\overrightarrow{b}|=|\overrightarrow{a}||\overrightarrow{b}|$;③若存在实数λ,使$\overrightarrow{a}=λ\overline{b}$,则$|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a|}+|\overrightarrow{b}|$;④若$|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}|+|\overrightarrow{b|}$,则存在实数λ,使得$\overrightarrow{a}=λ\overrightarrow{b}$.其中说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知2x≤256,且log2x≥$\frac{1}{2}$.
(1)求x的取值范围;
(2)求函数f(x)=log2($\frac{x}{2}$)•log2($\frac{x}{4}$)的最大值和最小值.

查看答案和解析>>

同步练习册答案