精英家教网 > 高中数学 > 题目详情
已知△ABC在中,角A,B,C所对的边分别为a,b,c,且acosC+
3
2
c=b,则角A(  )
A、
π
3
B、
π
6
C、
π
4
D、
π
2
考点:正弦定理
专题:解三角形
分析:通过已知表达式,利用正弦定理,以及三角形的内角和,转化sinB=sin(A+C),通过两角和的正弦函数,化简可求A的余弦值,即可求角A.
解答: 解:△ABC在中,由acosC+
3
2
c=b利用正弦定理可得 sinAcosC+
3
2
sinC=sinB,
而sinB=sin(A+C)=sinAcosC+cosAsinC.
可得
3
2
sinC=cosAsinC,sinC≠0,
所以
3
2
=cosA,A∈(0,π),所以A=
π
6

故选:B.
点评:本题考查正弦定理与两角和的正弦公式、诱导公式,三角形的内角和以及正弦定理的应用,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+ϕ) (其中ω>0,|ϕ|<
π
2
)的图象的相邻两条对称轴间的距离是
π
2
,且f(0)=
3
,则ω和ϕ的值分别是(  )
A、2,
π
3
B、2,
π
6
C、4,
π
6
D、4,
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中正视图和侧视图均是边长为2的等边三角形,则该几何体的表面积是(  )
A、
4
7
3
B、4+4
3
C、12
D、
4
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

有关数列的表达:
①数列若用图象表示,从图象上看是一群孤立的点;
②数列的项是有限的;
③若一个数列是递减的,则这个数列一定是有穷数列;
其中正确的个数(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足:z+1=
.
z
(1+i),其中
.
z
是复数z的共轭复数,则z•
.
z
等于(  )
A、3B、5C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}满足:a3=4,a4+a5=24.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
an
n•(n+1)•2n
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2asin2x+4cos2x-3,若对x∈R均有f(x)≥f(-
π
3
)恒成立.
(Ⅰ)求实数a的值及函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,且a=2,f(A)=1,求△ABC的内切圆半径r的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且a=2bsinA,求角B的度数?

查看答案和解析>>

同步练习册答案