精英家教网 > 高中数学 > 题目详情
4.已知直线l:y=-x+a与圆C:x2+y2=2相交于相异两点M、N,点O是坐标原点,且满足|$\overrightarrow{OM}$+$\overrightarrow{ON}$|>|$\overrightarrow{OM}$-$\overrightarrow{ON}$|,则实数a的取值范围是(  )
A.(-2,-$\sqrt{2}$)∪($\sqrt{2}$,2)B.(-$\sqrt{2}$,$\sqrt{2}$0C.($\sqrt{2}$,-1)∪(1,$\sqrt{2}$)D.(-1,1)

分析 利用条件,两边平方可得$\overrightarrow{OM}$•$\overrightarrow{ON}$>0,所以∠MON<90°,利用圆心到直线的距离,建立不等式,即可求出实数a的取值范围.

解答 解:因为|$\overrightarrow{OM}$+$\overrightarrow{ON}$|>|$\overrightarrow{OM}$-$\overrightarrow{ON}$|,
所以两边平方可得$\overrightarrow{OM}$•$\overrightarrow{ON}$>0,
所以∠MON<90°,
因为圆心到直线的距离d=$\frac{|a|}{\sqrt{2}}$
所以$\sqrt{2}$>$\frac{|a|}{\sqrt{2}}$>$\frac{\sqrt{2}}{2}$×$\sqrt{2}$,
所以-2<a<-$\sqrt{2}$或$\sqrt{2}$<a<2,
故选:A.

点评 本题考查直线与圆的位置关系,考查向量知识的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.(1)a>0,b>0,若$\sqrt{3}$为3a与3b的等比中项,求$\frac{1}{a}+\frac{1}{b}$的最小值;
(2)已知x>2,求f(x)=$\frac{1}{x-2}$+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}(q>0)中,a3=4,a2•a6=64,则a2=(  )
A.4B.5C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知tanα=2,那么tan(α-$\frac{π}{3}$)=$\frac{5\sqrt{3}-8}{11}$,sin2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.满足条件 {1,2}∪B={1,2,3,4,5}的所有集合B的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的三个顶点A(m,n),B(2,1),C(-2,3).
(Ⅰ)求BC边所在直线方程;
(Ⅱ)BC边上中线AD的方程为2x-3y+6=0,且S△ABC=7,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\sqrt{{{log}_5}(3-x)}$的定义域是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知θ为第二象限角,sinθ=$\frac{\sqrt{3}}{2}$,则tanθ等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“10a>10b”是“lga>lgb”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案