【题目】已知数列的前项和为,且满足:
(1)证明:是等比数列,并求数列的通项公式.
(2)设,若数列是等差数列,求实数的值;
(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.
【答案】(1) 证明过程见解析 (2) (3)
【解析】
(1)由,再得出,两式作差,得出,,再分奇数项,偶数项分别求通项公式即可得解;
(2)由等差数列的等差中项可得恒成立,可得,解得;
(3)由已知有,由裂项求和法求数列前项和得,由分离变量最值法可得,运算即可得解.
解:(1)因为,①
所以,②
②-①得:,
由易得,即,
即,,
即数列的奇数项是以为首项,4为公比的等比数列,偶数项是以为首项,4为公比的等比数列,
当为奇数时,,
当为偶数时,,
综上可得,
又,
故是等比数列,且数列的通项公式.
(2)因为,
所以,
因为数列是等差数列,
所以恒成立,
即有恒成立,
即,
解得;
(3)因为=,
即,
又对任意的存在实数,使得,
即对任意的 恒成立,
又当时,取最小值3,时,,
即,
故实数的最大值为.
科目:高中数学 来源: 题型:
【题目】某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的60名学生,得到数据如下表:
喜欢统计课程 | 不喜欢统计课程 | 合计 | |
男生 | 20 | 10 | 30 |
女生 | 10 | 20 | 30 |
合计 | 30 | 30 | 60 |
(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?
(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选3人,求恰有2个男生和1个女生的概率.
下面的临界值表供参考:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:
运动达人 | 参与者 | 合计 | |
男教师 | 60 | 20 | 80 |
女教师 | 40 | 20 | 60 |
合计 | 100 | 40 | 140 |
(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?
(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.
参考公式:,其中.
参考数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于、两点,试问,是否存在轴上的点,使得对任意的,为定值,若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机企业为确定下一年度投入某种产品的研发费用,统计了近年投入的年研发费用千万元与年销售量千万件的数据,得到散点图1,对数据作出如下处理:令,,得到相关统计量的值如图2:
(1)利用散点图判断和哪一个更适合作为年研发费用和年销售量的回归类型(不必说明理由),并根据数据,求出与的回归方程;
(2)已知企业年利润千万元与的关系式为(其中为自然对数的底数),根据(1)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形中,,,,四边形为矩形,,平面平面.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成锐二面角的余弦值;
(Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.
(1)设直线,的斜率分别为,,求证:常数;
(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;
②当的内切圆的面积为时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
支持 | 不支持 | 合计 | |
男性市民 | |||
女性市民 | |||
合计 |
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.
附:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com