A. | $\frac{1}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
分析 由a+b及cosC的值,利用余弦定理表示出一个关系式,配方后利用基本不等式即可求出c的最小值,进而得到a+b+c的最小值.
解答 解:由余弦定理得:c2=a2+b2-2abcosC,
又a+b=1,cosC=$\frac{1}{2}$,
所以c2=(a+b)2-3ab≥(a+b)2-3($\frac{a+b}{2}$)2=$\frac{1}{4}$,当且仅当b=a时取等号,
所以c的最小值为$\frac{1}{2}$,则a+b+c的最小值为$\frac{3}{2}$.
故选:C.
点评 此题考查学生灵活运用余弦定理及完全平方公式化简求值,会利用基本不等式求函数的最小值,是一道基础题.本题注意利用不等式( $\frac{a+b}{2}$)2≥ab来进行解答.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{6}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com