精英家教网 > 高中数学 > 题目详情

【题目】关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1 , x2),且:x2﹣x1=15,则a=(
A.
B.
C.
D.

【答案】A
【解析】解:因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1 , x2), 所以x1+x2=2a…①,
x1x2=﹣8a2…②,
又x2﹣x1=15…③,
2﹣4×②可得(x2﹣x12=36a2 , 代入③可得,152=36a2 , 解得a= =
因为a>0,所以a=
故选:A.
【考点精析】掌握解一元二次不等式是解答本题的根本,需要知道求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某环保节能设备生产企业的产品供不应求,已知某种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=150﹣ x,每套的售价不低于90万元;月产量x(套)与生产总成本y2(万元)之间满足关系式y2=600+72x,则月生产多少套时,每套设备的平均利润最大?最大平均利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,则数列中的为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x,y的不等式组 表示的平面区域内存在点P(x0 , y0),满足x0﹣2y0=2,求得m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中 为自然对数的底数, …….

1)令,若对任意的恒成立,求实数的值;

2)在(1)的条件下,设为整数,且对于任意正整数 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= +lnx在[1,+∞)上为增函数,且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R).
(Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上为单调函数,求m的取值范围;
(Ⅲ)设h(x)= ,若在[1,e]上至少存在一个x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosxcos(x﹣ ).
(1)求f( )的值.
(2)求使f(x)< 成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)= (万元).当年产量不小于80千件时,C(x)=51x+ (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等差数列,下列结论中正确的是(
A.若a1+a2>0,则a2+a3>0
B.若a1+a2<0,则a2+a3<0
C.若0<a1<a2 , 则a2
D.若a1<0,则(a2﹣a1)(a2﹣a3)<0

查看答案和解析>>

同步练习册答案