精英家教网 > 高中数学 > 题目详情
已知各项均为正数的等比数列{an}满足:a2012=a2011+2a2010,若
aman
=2a1,则
1
m
+
5
n
的最小值为
 
考点:基本不等式在最值问题中的应用,等比数列的性质
专题:综合题,不等式的解法及应用
分析:由已知各项均为正数的等比数列{an}满足:a2012=a2011+2a2010,可求出公比q的值,再由
aman
=2a1,及通项公式即可求出m+n=4,进而再由基本不等式即可求出
1
m
+
5
n
的最小值.
解答: 解:设等比数列{an}的公比为q>0,∵a2012=a2011+2a2010,∴a2011q=a2011+
2a2011
q

∵a2011>0,∴q2-q-2=0,解得q=2,或q=-1,∵q>0,∴q=-1应舍去,∴q=2.
aman
=2a1,∴
a12×2m+n-2
=2a1,解得m+n=4.
1
m
+
5
n
=
1
4
1
m
+
5
n
)(m+n)=
1
4
×(6+
n
m
+
5m
n
)≥
1
4
(6+2
5
)=
3+
5
2

当且仅当
n
m
=
5m
n
时取得最小值
3+
5
2

故答案为:
3+
5
2
点评:本题综合考查了等比数列的通项公式和基本不等式的性质,深刻理解以上知识和方法是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△A BC中,a,b,c分别为三内角A,B,C所对的边,且
2
b
a-
2
b
=
sin2B
sinA-sin2B
,则角B=(  )
A、
π
6
B、
π
4
C、
π
3
D、
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
AB
=(1,x),
AC
=(x+2tanθ,y+1),且
AB
AC
,其中θ∈(-
π
2
π
2
).
(1)将y表示为x的函数,并求出函数的表达式y=f(x)
(2)若y=f(x)在x∈[-1,
3
]上为单调函数,求θ的取值范围;
(3)当θ∈[-
π
3
π
3
]时,y=f(x)在[-1,
3
]上的最小值为g(θ),求g(θ)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ=1,曲线C2的参数方程为
x=1+2cosα
y=1+2sinα
(α为参数).则两曲线的公共弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等轴双曲线的顶点在x轴上,两顶点间的距离是4,右焦点为F.
(1)求双曲线的标准方程和渐近线方程;
(2)椭圆E的中心在原点O,右顶点与F点重合,上述双曲线中斜率大于0的渐近线交椭圆于A,B两点(A在第一象限),若AB⊥AF,试求椭圆E的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
4
-y2=1的离心率是
 
;渐近线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某村计划建造一个室内面积为150m2的矩形蔬菜温室.在温室内,沿左、右两端与后侧内墙各保留1m宽的通道,沿前侧内墙保留2m空地.适当调整矩形温室的边长可使蔬菜的种植面积最大.最大种植面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
y≤x
y≥-x
2x-y-3≤0
表示的平面区域为M,x2+y2≤1所表示的平面区域为N,现随机向区域M内抛一粒豆子,则豆子落在区域N内的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知M(-a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是
 

①当a=7时,坐标平面内不存在黄金直线;
②当a=5时,坐标平面内有无数条黄金直线;
③当a=3时,黄金点的轨迹是个椭圆;
④当a=0时,坐标平面内有且只有1条黄金直线.

查看答案和解析>>

同步练习册答案