精英家教网 > 高中数学 > 题目详情

如图1,,过动点A,垂足在线段上且异于点,连接,沿将△折起,使(如图2所示).

(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

(1)时, 三棱锥的体积最大.(2)

解析试题分析:(1)解法1:在如图1所示的△中,设,则
知,△为等腰直角三角形,所以.
由折起前知,折起后(如图2),,且
所以平面.又,所以.于是
    

当且仅当,即时,等号成立   
故当,即时, 三棱锥的体积最大.   
解法2:同解法1,得.  
,由,且,解得
时,;当时,
所以当时,取得最大值.
故当时, 三棱锥的体积最大.
(2)解法1:以D为原点,建立如图a所示的空间直角坐标系D-.
由(Ⅰ)知,当三棱锥A-BCD的体积最大时,BD=1,ADCD=2.
于是可得D(0,0,0,),B(1,0,0),C(0,2,0),A(0,0,2)M(0,1,1)E,1,0),且BM=(-1,1,1).    
N(0,, 0),则EN,-1,0).因为EN⊥BM等价于EN·BM=0,即(-1,0)·(-1,1,1)=+-1=0,故N(0, ,0) 
所以当DN时(即NCD的靠近点D的一个四等分点)时,ENBM.
设平面BMN的一个法向量为n=(,,),由可取=(1,2,-1) 
与平面所成角的大小为,则由,可得
,即.   
与平面所成角的大小为     
解法2:由(Ⅰ)知,当三棱锥的体积最大时,
如图b,取的中点,连结

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图.在直棱柱ABC-A1B1C1中,∠ BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在菱BB1上运动。

(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文科)长方体中,是底面对角线的交点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面
(Ⅲ) 求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的:

(1)试判断是否在平面内;(回答是与否)
(2)求异面直线所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)一个四棱锥的直观图和三视图如图所示:

(1)求证:
(2)求出这个几何体的体积。
(3)若在PC上有一点E,满足CE:EP=2:1,求证PA//平面BED。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,在直棱柱中,的中点.

(1)求证:
(2)求证:
(3)在上是否存在一点,使得,若存在,试确定的位置,并判断与平面是否垂直?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在直三棱柱中,底面为等边三角形,且,分别是,的中点.

(1)求证:
(2)求证:
(3) 求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

几何体的三视图如图,交于点分别是直线的中点,

(I)
(II)
(Ⅲ)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案