精英家教网 > 高中数学 > 题目详情
已知椭圆的长轴长为4,且过点
(1)求椭圆的方程;
(2)设是椭圆上的三点,若,点为线段的中点,两点的坐标分别为,求证:
(1);(2)详见试题解析.

试题分析:(1)由已知列方程组可求得的值,进而可得椭圆的标准方程;(2)利用平面向量的坐标运算和待定系数法可得线段的中点的轨迹是以为焦点的椭圆,有椭圆的定义最终可得
试题解析:(1)由已知                      2分
解得.                                 4分
椭圆的方程为.                           5分
(2)设,则.   6分
,
,即.    7分
是椭圆上一点,所以
,                 8分

,故.    9分
又线段的中点的坐标为,             10分
,11分
线段的中点在椭圆上.         12分
椭圆的两焦点恰为          13分
                             14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(I)若ΔABF2为正三角形,求椭圆的离心率;
(II)若椭圆的离心率满足,为坐标原点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对k∈R,直线y-kx-1=0与椭圆恒有公共点,则实数m的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,P为椭圆上,则此椭圆离心率的取值范围是                                               (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点. 设原点到直线的距离为点到的距离为. 若,则椭圆的离心率为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设e是椭圆=1的离心率,且e∈(,1),则实数k的取值范围是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步练习册答案