精英家教网 > 高中数学 > 题目详情

【题目】如图是某直三棱柱(侧棱与底面垂直的三棱柱)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中, 的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求出该几何体的体积;

(2)若的中点,求证: 平面

【答案】(1) ;(2) 见解析.

【解析】试题分析:(1先由面面垂直的性质定理证明 ,再由面面垂直的判定定理证明 证明平面,从而由棱锥的体积公式可得结果;(2连接 ,由中位线定理得 ,由平行四边形可得 ,进而可得结果.

试题解析:(1)由题意可知:四棱锥中,

平面平面

平面平面

所以, 平面

则四棱锥的体积为:

(2)连接,则

,所以四边形为平心四边形,

平面 平面,

所以, 平面

【方法点晴】本题主要考查线面平行的判定定理、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间(满分100分,成绩不低于40分),现将成绩按如下方式分成6组:第一组;第二组;……;第六组,并据此绘制了如图所示的频率分布直方图.

(Ⅰ)估计这次月考数学成绩的平均分和众数;

(Ⅱ)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:

休假次数

0

1

2

3

人数

5

10

20

15

根据表中信息解答以下问题:

(1)从该单位任选两名职工,求这两人休年假次数之和为4的概率;

(2)从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率为是椭圆的焦点,直线的斜率为为坐标原点.

(1)求椭圆的方程;

(2)设过点的直线与椭圆相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图.规定:成绩不低于120分时为优秀成绩.

(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;

(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为 ,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了纪念“中国红军长征90周年”,增强学生对“长征精神”的深刻理解,在全校组织了一次有关“长征”的知识竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得20分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.

(1)求的分布列和均值;

(2)求甲、乙两队总得分之和等于40分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有5名男志愿和3名女志愿者,从中随机抽取4人接受甲种心理暗示,另4人接受乙种心理暗示.

(1)求接受甲种心理暗示的志愿者中包含但不包含的频率.

(2)用表示接受乙种心理暗示的女志愿者人数,求的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若曲线在点处的切线经过点,求的值;

(2)若在区间上存在极值点,判断该极值点是极大值点还是极小值点,并求的取值范围;

(3)若当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用(单位:万元)与隔热层厚度(单位: )满足关系,若不建隔热层,每年能源消耗为8万元.设为隔热层建造费用与20年的能源消耗费用之和.

(1)求的值及的表达式;

(2)隔热层修建多厚时,总费用达到最小?并求最小值.

查看答案和解析>>

同步练习册答案