精英家教网 > 高中数学 > 题目详情
3.已知a>0且a≠1,函数f(x)=4+loga(x+4)的图象恒过定点P,若角α的终边经过点P,则cosα的值为$-\frac{3}{5}$.

分析 根据函数f(x)恒过定点P,求出P点的坐标,利用cosα的定义求值即可.

解答 解:函数f(x)=4+loga(x+4)的图象恒过定点P,即x+4=1,解得:x=-3,则y=4
故P的坐标为(-3,4),
角α的终边经过点P,
则cosα=$\frac{x}{\sqrt{{x}^{2}+{y}^{2}}}=-\frac{3}{5}$.
故答案为:$-\frac{3}{5}$.

点评 本题考查考查了对数函数的恒过点坐标的求法和余弦的定义.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某四面体的三视图如图所示,则此四面体的四个面中面积最大的面的面积等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若集合A={x|x=2n,n∈Z},B={x|2<x≤6,x∈R},则A∩B={4,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数a,b,c满足a2+2b2+3c2=1,则a+2b的最大值是(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.cos240°的值等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{2}cost\\ y=-1+\sqrt{2}sint\end{array}\right.$,(t为参数),在以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos({θ+\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,A,B两点的极坐标为$({1,\frac{π}{2}}),({1,π})$.
(1)求圆C的普通方程和直线L的直角坐标方程;
(2)点P是圆C上任意一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列选项中,存在实数m使得定义域和值域都是(m,+∞)的函数是(  )
A.y=exB.y=lnxC.y=x2D.y=$\frac{x-1}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,则$\frac{y-2}{x-4}$的最大值为$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数$f(x)=4cos(x-\frac{π}{6})sinx-2cos(2x+π)$,则函数f(x)的最大值和最小值分别为(  )
A.13和-11B.8和-6C.1和-3D.3和-1

查看答案和解析>>

同步练习册答案