【题目】如图,在四棱锥中,,且.
(1)证明:平面平面;
(2)若,,二面角的大小为,求.
【答案】(1)见解析;(2)
【解析】
(1)由题意证明平面,从而证得平面平面;
(2)求出平面PAB的法向量和平面PBC的法向量,由此利用向量法能求出cosθ.
(1)证明:∵,∴,,
∵,∴,
又∵,且平面,平面,
∴平面,又平面,
∴平面平面;
(2)∵,,∴四边形为平行四边形,
由(1)知平面,∴,则四边形为矩形,
在中,由,,
可得为等腰直角三角形,
设,则.
取中点,中点,连接、,
以为坐标原点,分别以、、所以直线为、、轴建立空间直角坐标系,则:
,,,.
,,.
设平面的一个法向量为,
由,得,
取,得.
∵平面,平面,∴,
又,,
∴平面,则为平面的一个法向量,.
∴.
由图可知,二面角为钝角,
∴二面的余弦值为.
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程=x+;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想.
附:(参考数据)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:
1 | 4 | 7 | 12 | |
229 | 244 | 241 | 196 |
(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;
(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M (m,0)(m> )作斜率不为0的直线l,交椭圆E于A,B两点,点P( ,0),且 为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个结论:
①已知X服从正态分布N(0,σ2),且P(﹣2≤X≤2)=0.6,则P(X>2)=0.2;
②若命题 ,则¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是 .
其中正确的结论的个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com