【题目】设fn(x)=(3n﹣1)x2﹣x(n∈N*),An={x|fn(x)<0}
(1)定义An={x|x1<x<x2}的长度为x2﹣x1 , 求An的长度;
(2)把An的长度记作数列{an},令bn=anan+1;
1°求数列{bn}的前n项和Sn;
2°是否存在正整数m,n(1<m<n),使得S1 , Sm , Sn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
【答案】
(1)解:由fn(x)<0得(3n﹣1)x2﹣x<0,∴0<x< ,
∴An的长度为
(2)解:1°、an= ,bn=anan+1= = ( ﹣ ),
∴数列{bn}的前n项和Sn= [( ﹣ )+( ﹣ )+…+( ﹣ )]= ;
2°、由1°可知S1= ,Sm= ,Sn= ,
假设存在正整数m,n(1<m<n),使得S1,Sm,Sn成等比数列,
则Sm2=S1Sn,化简得(﹣3m2+6m+2)n=5m2,
m=2时,n=10;
m≥3时,﹣3m2+6m+2<0,5m2>0,等式不成立,
综上所述,存在正整数m=2,n=10,使得S1,Sm,Sn成等比数列
【解析】(1)利用新定义,即可求An的长度;(2)1°利用裂项法可求得Sn;
2°假设存在正整数m、n,且1<m<n,使得S1、Sm、Sn成等比数列,可求得(﹣3m2+6m+2)n=5m2 , 由1<m<n,验证可求得结论.
【考点精析】通过灵活运用二次函数的性质,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减即可以解答此题.
科目:高中数学 来源: 题型:
【题目】对数列{an}前n项和为Sn , an>0(n=1,2,…),a1=a2=1,且对n≥2有(a1+a2+…+an)an=(a1+a2+…+an﹣1)an+1 , 则S1S2+S2S3+S3S4+…+Sn﹣1Sn= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:
(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;
(2)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.附:独立性检验统计量,其中.
独立性检验临界值表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且 ∥ .
(1)求角B的大小;
(2)若a+c=8,求AC边上中线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=asin(x+ )﹣b(a>0)的最大值为2,最小值为0.
(1)求a、b的值;
(2)利用列表法画出函数在一个周期内的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及 格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人.
(1) 根据以上数据建立一个的列联表;
(2) 试判断成绩与班级是否有关?
参考公式:,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=sin(2x+ )的图象,只需将y=sin2x的图象上每一个点( )
A.横坐标向左平移 个单位
B.横坐标向右平移 个单位
C.横坐标向左平移 个单位
D.横坐标向右平移 个单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com