【题目】已知向量,,函数的最小值为
(1)当时,求的值;
(2)求;
(3)已知函数为定义在R上的增函数,且对任意的都满足
问:是否存在这样的实数m,使不等式 +对所有
恒成立,若存在,求出m的取值范围;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知椭圆的离心率为,左右焦点分别为和,以点为圆心,以为半径的圆与以点为圆心,以为半径的圆相交,且交点在椭圆上.
()求椭圆的方程.
()设椭圆,为椭圆上任意一点,过点的直线交椭圆于、两点,射线交椭圆于点.
①求的值.
②求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,x1 , x2∈(0, ),且x1<x2 , 则下列结论中正确的是( )
A.(x1﹣x2)[f(x1)﹣f(x2)]<0
B.f( )<f( )
C.x1f(x2)>x2f(x1)
D.x2f(x2)>x1f(x1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆C: (a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆上任取一点,过点作轴的垂线段,为垂足.,当点在圆上运动时,
(1)求点的轨迹的方程;
(2) 若,直线交曲线于、两点(点、与点不重合),且满足.为坐标原点,点满足,证明直线过定点,并求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L1,L2两条巷道通往作业区(如下图),L1巷道有A1,A2,A3三个易堵塞点,各点被堵塞的概率都是;L2巷道有B1,B2两个易堵塞点,被堵塞的概率分别为,.
(1)求L1巷道中,三个易堵塞点最多有一个被堵塞的概率;
(2)若L2巷道中堵塞点个数为X,求X的分布列及均值E(X),并按照“平均堵塞点少的巷道是较好的抢险路线”的标准,请你帮助救援队选择一条抢险路线,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com