精英家教网 > 高中数学 > 题目详情

【题目】已知向量,函数的最小值为

(1)当时,求的值;

(2)求

(3)已知函数为定义在R上的增函数,且对任意的都满足

问:是否存在这样的实数m,使不等式 +对所有

恒成立,若存在,求出m的取值范围;若不存在,说明理由.

【答案】(1);(2);(3)见解析

【解析】

(1)把,代入相应的向量坐标表示式,然后,利用向量数量积的坐标表示,化简函数解析式即可;
(2)转化成二次函数问题,对对称轴的位置与区间 进行讨论;
(3)利用函数为定义在R上的函数,得到

,然后,再根据函数的单调性,转化成,最后,利用换元法,转化成,求解函数上的最大值为3,从而解决问题.

(1),则

时,

(2)

(3)易证上的奇函数

要使成立,

只须

又由为单调增函数有

,则

原命题等价于恒成立;

,即.

由双勾函数知上为减函数,时,原命题成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知椭圆的离心率为,左右焦点分别为,以点为圆心,以为半径的圆与以点为圆心,以为半径的圆相交,且交点在椭圆上.

)求椭圆的方程.

)设椭圆为椭圆上任意一点,过点的直线交椭圆两点,射线交椭圆于点

①求的值.

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,x1 , x2∈(0, ),且x1<x2 , 则下列结论中正确的是(
A.(x1﹣x2)[f(x1)﹣f(x2)]<0
B.f( )<f(
C.x1f(x2)>x2f(x1
D.x2f(x2)>x1f(x1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆C: (a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥, 平面平面,.

1)求证:平面

2)求直线与平面所成角的正弦值;

3)在棱上是否存在点,使得平面?若存在, 的值;若不存在, 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.,当点在圆上运动时,

(1)求点的轨迹的方程;

(2) 若,直线交曲线两点(点与点不重合),且满足.为坐标原点,点满足,证明直线过定点,并求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象上一点处的切线方程为

)求的值.

)若方程在区间内有两个不等实根,求实数的取值范围.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L1L2两条巷道通往作业区(如下图),L1巷道有A1A2A3三个易堵塞点,各点被堵塞的概率都是L2巷道有B1B2两个易堵塞点,被堵塞的概率分别为.

(1)求L1巷道中,三个易堵塞点最多有一个被堵塞的概率;

(2)若L2巷道中堵塞点个数为X,求X的分布列及均值E(X),并按照“平均堵塞点少的巷道是较好的抢险路线”的标准,请你帮助救援队选择一条抢险路线,并说明理由.

查看答案和解析>>

同步练习册答案