如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
(1)
(2)
【解析】(1)以O为原点,OB,OC,OA分别为x,y,z轴
建立空间直角坐标系.
则有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).
所以,cos<>. ……………………3分
由于异面直线BE与AC所成的角是锐角,
所以,异面直线BE与AC所成角的余弦值是. ……………………4分
(2),,
设平面ABE的法向量为,
则由,,得,
取,……………………6分
又因为
所以平面BEC的一个法向量为n2=(0,0,1),
所以. ……………………8分
由于二面角A-BE-C的平面角是n1与n2的夹角的补角,
所以,二面角A-BE-C的余弦值是.……………………10分
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
OA |
a |
OB |
b |
OC |
c |
AG |
A、
| ||||||||||
B、-
| ||||||||||
C、
| ||||||||||
D、-
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com