分析 问题转化为 $\frac{3a-2}{(2a-3)(a+1)}$<0,解不等式组即可.
解答 解:∵(a+1)-1<(3-2a)-1,
∴$\frac{1}{a+1}$-$\frac{1}{3-2a}$=$\frac{1}{a+1}$+$\frac{1}{2a-3}$=$\frac{3a-2}{(2a-3)(a+1)}$<0,
∴$\left\{\begin{array}{l}{3a-2>0}\\{(2a-3)(a+1)<0}\end{array}\right.$①或 $\left\{\begin{array}{l}{3a-2<0}\\{(2a-3)(a+1)>0}\end{array}\right.$②,
解①得:$\frac{2}{3}$<a<$\frac{3}{2}$;
解②得:a<-1;
∴实数a的取值范围是(-∞,-1)∪($\frac{2}{3}$,$\frac{3}{2}$).
故答案为:(-∞,-1)∪($\frac{2}{3}$,$\frac{3}{2}$).
点评 本题考查分式不等式的解法,通分化积是关键,考查转化思想与解不等式组的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{3\sqrt{2}}{4}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2012 | B. | -2008 | C. | -2009 | D. | -2013 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,1.5) | B. | (1.5,2) | C. | (2,2.5) | D. | (2.5,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com