精英家教网 > 高中数学 > 题目详情

【题目】已知中心在原点的双曲线的右焦点为,右顶点为.

(1)求双曲线的方程;

(2)若直线与双曲线恒有两个不同的交点,且(其中为坐标原点),求实数取值范围.

【答案】1y21

2(1,-)∪(1)

【解析】

(1)设双曲线C的方程为1(a>0b>0)

由已知得ac2,再由c2a2b2b21

所以双曲线C的方程为y21

(2)ykx代入y21中,整理得(13k2)x26kx90

由题意得

k2k2<1 ①

A(xAyA)B(xByB),则xAxBxAxB

·>2xAxByAyB>2

xAxByAyBxAxB(kxA)(kxB)(k21)xAxBk(xAxB)2(k21)·2

于是>2,即>0,解得<k2<3 ②

①②<k2<1

所以k的取值范围为(1,-)∪(1)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间(﹣ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,,直线与直线相交于点,直线与直线的斜率分别记为,且

(1)求点的轨迹的方程;

(2)过定点作直线与曲线交于两点, 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】泰兴机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)=-2x2+7 000x+600.

(1)求产量为1 000台的总利润与平均利润;

(2)求产量由1 000台提高到1 500台时,总利润的平均改变量;

(3)c′(1 000)c′(1 500),并说明它们的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
( I)求λ的值及数列{an}的通项公式;
( II)设 ,且数列{bn}的前n项和为Sn , 求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)= ,称为狄利克雷函数,则关于函数f(x)有以下四个命题: ①f(f(x))=1;
②函数f(x)是偶函数;
③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC为等边三角形.
其中真命题的个数是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.
(1)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中是错误命题的个数有(  )

(1)若命题p为假命题,命题为假命题,则命题“”为假命题;

(2)命题“若,则”的否命题为“若,则”;

(3)对立事件一定是互斥事件;

(4)为两个事件,则P(A∪B)=P(A)+P(B);

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案