【题目】已知圆,动圆与圆外切,且与直线相切,该动圆圆心的轨迹为曲线.
(1)求曲线的方程
(2)过点的直线与抛物线相交于两点,抛物线在点A的切线与交于点N,求面积的最小值.
【答案】(1);(2)4.
【解析】
(1)先设,动圆半径为,根据题意,列出等量关系,化简整理,即可得出曲线方程;
(2)设,依题意可知,直线的斜率存在,设直线的方程为:,联立直线与抛物线方程,根据韦达定理,以及弦长公式,表示出,再表示出过点点的切线方程,求出点,根据点到直线距离公式,以及三角形面积公式,得到,即可得出结果.
(1)设,动圆半径为,因为动圆与圆外切,
所以,
又动圆与直线相切,所以由题意可得:,
即,即,整理得:;
所以抛物线的方程为.
(2)设,依题意可知,直线的斜率存在,
故设直线的方程为:,
联立消去可得,.
则.
所以
.
由,得,
所以过点的切线方程为, 又,
所以切线方程可化为.令,可得,
所以点,
所以点到直线的距离,
所以,当时,等号成立
所以面积的最小值为4.
科目:高中数学 来源: 题型:
【题目】设双曲线的左顶点为D,且以点D为圆心的圆与双曲线C分别相交于点A、B,如图所示.
(1)求双曲线C的方程;
(2)求的最小值,并求出此时圆D的方程;
(3)设点P为双曲线C上异于点A、B的任意一点,且直线PA、PB分别与x轴相交于点M、N,求证:为定值(其中O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于和之间,将测量结果按如下方式分成6组:第1组,第2组,…,第6组,如图是按上述分组方法得到的频率分布直方图.
(1)由频率分布直方图估计该校高三年级男生身高的中位数;
(2)在这50名男生身高不低于的人中任意抽取2人,则恰有一人身高在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线过点,其参数方程为 (为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于,两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且它的一个焦点与抛物线的焦点相同.直线过点,且与椭圆相交于两点.
(1)求椭圆的方程;
(2)若直线的一个方向向量为,求的面积(其中为坐标原点);
(3)试问:在轴上是否存在点,使得为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在单位圆O:x2+y2=1上任取一点P(x,y),圆O与x轴正向的交点是A,设将OA绕原点O旋转到OP所成的角为θ,记x,y关于θ的表达式分别为x=f(θ),y=g(θ),则下列说法正确的是( )
A.x=f(θ)是偶函数,y=g(θ)是奇函数
B.x=f(θ)在为增函数,y=g(θ)在为减函数
C.f(θ)+g(θ)≥1对于恒成立
D.函数t=2f(θ)+g(2θ)的最大值为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com