精英家教网 > 高中数学 > 题目详情

【题目】已知圆,动圆与圆外切,且与直线相切,该动圆圆心的轨迹为曲线.

1)求曲线的方程

2)过点的直线与抛物线相交于两点,抛物线在点A的切线与交于点N,求面积的最小值.

【答案】1;(24.

【解析】

1)先设,动圆半径为,根据题意,列出等量关系,化简整理,即可得出曲线方程;

2)设,依题意可知,直线的斜率存在,设直线的方程为:,联立直线与抛物线方程,根据韦达定理,以及弦长公式,表示出,再表示出过点点的切线方程,求出点,根据点到直线距离公式,以及三角形面积公式,得到,即可得出结果.

1)设,动圆半径为,因为动圆与圆外切,

所以

又动圆与直线相切,所以由题意可得:

,即,整理得:

所以抛物线的方程为.

2)设,依题意可知,直线的斜率存在,

故设直线的方程为:

联立消去可得,.

.

所以

.

,得

所以过点的切线方程为

所以切线方程可化为.,可得,

所以点,

所以点到直线的距离

所以,当时,等号成立

所以面积的最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论单调性;

(Ⅱ)当时,设函数存在两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的左顶点为D,且以点D为圆心的圆与双曲线C分别相交于点AB,如图所示.

1)求双曲线C的方程;

2)求的最小值,并求出此时圆D的方程;

3)设点P为双曲线C上异于点AB的任意一点,且直线PAPB分别与x轴相交于点MN,求证:为定值(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1,第2,…,第6,如图是按上述分组方法得到的频率分布直方图.

1)由频率分布直方图估计该校高三年级男生身高的中位数;

2)在这50名男生身高不低于的人中任意抽取2人,则恰有一人身高在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且它的一个焦点与抛物线的焦点相同.直线过点,且与椭圆相交于两点.

1)求椭圆的方程;

2)若直线的一个方向向量为,求的面积(其中为坐标原点);

3)试问:在轴上是否存在点,使得为定值?若存在,求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单位圆Ox2+y21上任取一点Pxy),圆Ox轴正向的交点是A,设将OA绕原点O旋转到OP所成的角为θ,记xy关于θ的表达式分别为xfθ),ygθ),则下列说法正确的是(  )

A.xfθ)是偶函数,ygθ)是奇函数

B.xfθ)在为增函数,ygθ)在为减函数

C.fθ+gθ≥1对于恒成立

D.函数t2fθ+g2θ)的最大值为

查看答案和解析>>

同步练习册答案