精英家教网 > 高中数学 > 题目详情

【题目】如图所示,三棱锥V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,线段AB的中点为D.

(1)求证:平面VCD⊥平面ABC;
(2)求三棱锥V﹣ABC的体积.

【答案】
(1)证明:如图所示:

∵VA=VB=2,AB=2 ,D为AB的中点,

∴VD⊥AB,VD= =1.

同理CD⊥AB,CD=1,CD∩VD=D,∴AB⊥平面VCD.

又∵AB平面ABC,∴平面VCD⊥平面ABC.


(2)解:∵AB⊥平面VCD,

∴三棱锥V﹣ABC的体积等于三棱锥A﹣VCD与B﹣VCD的体积之和.

∵VC=VD=CD=1,

∴△VCD的面积为:

= =

∴三棱锥V﹣ABC的体积为:

VVABC= = =


【解析】1、由已知条件可得VD⊥AB且VD=1,同理可得CD=1由线面垂直的判定定理可得AB⊥平面VCD再由面面垂直的判定定理可得平面VCD⊥平面ABC。
2、由题意可得三棱锥V﹣ABC的体积等于三棱锥A﹣VCD与B﹣VCD的体积之和所以VVABC= × S × A B。
【考点精析】通过灵活运用平面与平面垂直的判定,掌握一个平面过另一个平面的垂线,则这两个平面垂直即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】画正六棱柱的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列 的前 项和为 ,且 ,数列 为等差数列,且 .
(1)求
(2)求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,导函数f'(x)的图象如图所示,则函数f(x)(
A.无极大值点,有四个极小值点
B.有三个极大值点,两个极小值点
C.有两个极大值点,两个极小值点
D.有四个极大值点,无极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=lnx+ x2
(1)求曲线f(x)在x=1处的切线方程;
(2)设P为曲线f(x)上的点,求曲线C在点P处切线的斜率的最小值及倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1 (t为参数),C2 (θ为参数). (Ⅰ)化C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若C1上的点P对应的参数为t=﹣ ,Q为C2上的动点,求线段PQ的中点M到直线C3:ρcosθ﹣ ρsinθ=8+2 距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 满足| |=2,| + |=6,| |=| |,且 ,则| |的取值范围为( )
A.[4,8]
B.[4 ,8 ]
C.(4,8)
D.(4 ,8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用反证法证明:已知a,b均为有理数,且 都是无理数,求证: 是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆中心在坐标原点,焦点在x轴上,一个顶点坐标为(2,0),离心率为
(1)求这个椭圆的方程;
(2)若这个椭圆左焦点为F1 , 右焦点为F2 , 过F1且斜率为1的直线交椭圆于A、B两点,求△ABF2的面积.

查看答案和解析>>

同步练习册答案