【题目】已知函数
(1)证明:当时, ;
(2)若当时, ,求实数的取值范围.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)先求导数,再求导函数零点,列表分析函数单调性变化规律,确定函数最小值为,即证得结论(2)先讨论分母正负,化分式为整式,再求导数,由于,所以必须为增函数,根据单调性讨论可得实数的取值范围.
试题解析:(1)当时, ,
则,令,解得
当时, ,∴在上是减函数;
当时, ,∴在上是增函数;
故在处取得最小值,即.
(2)由已知,∴.
(i)当时,若,则,此时,不符合题设条件;
(ii)当时,若,
令,则
而.
①当时,由(1)知, ,即,
它等价于,
∴
此时在上是增函数,
∴,即.
②当时,由(1)知, ,∴
∴
当时, ,此时在上是减函数,
∴,即,不符合题设条件.
综上: .
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集为M.
(1)求M;
(2)当a2,b2∈M时,证明: |a+b|≤|ab+3|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为进行“阳光运动一小时”活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地。如图,点在上,点在上,且点在斜边上,已知米,米,,设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正的常数).
(1)试用表示,并指出如何设计矩形的长和宽,才能使得矩形的面积最大,且求出的最大值;
(2)求总造价关于面积的函数,说明如何选取,使总造价最低(不要求求出最低造价).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.
(1)求抛物线方程;
(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,直平行六面体中,为棱上任意一点,为底面(除外)上一点,已知在底面上的射影为,若再增加一个条件,就能得到,现给出以下条件:
①;②在上;③平面;④直线和在平面的射影为同一条直线.其中一定能成为增加条件的是__________.(把你认为正确的都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(Ⅰ)求所取3张卡片上的数字完全相同的概率;
(Ⅱ)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.
(注:若三个数满足,则称为这三个数的中位数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共14分)如图,在三棱锥中, 底面
,点, 分别在棱上,且(Ⅰ)求证: 平面;(Ⅱ)当为的中点时,求与平面所成的角的大小;(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com