精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)证明:当时,

(2)若当时, ,求实数的取值范围.

【答案】1见解析;(2)见解析.

【解析】试题分析:(1先求导数,再求导函数零点,列表分析函数单调性变化规律,确定函数最小值为,即证得结论2先讨论分母正负,化分式为整式,再求导数由于,所以必须为增函数,根据单调性讨论可得实数的取值范围.

试题解析:1)当时,

,令,解得

时, 上是减函数;

时, 上是增函数;

处取得最小值,即.

(2)由已知,∴.

i)当时,若,则,此时,不符合题设条件;

(ii)当时,若

,则

.

①当时,由(1)知, ,即

它等价于

此时上是增函数,

,即.

②当时,由(1)知,

时, ,此时上是减函数,

,即,不符合题设条件.

综上: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集为M.

(1)求M

(2)当a2b2M时,证明: |ab|≤|ab+3|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为进行“阳光运动一小时”活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地。如图,点上,点上,且点在斜边上,已知米,米,,设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正的常数).

(1)试用表示,并指出如何设计矩形的长和宽,才能使得矩形的面积最大,且求出的最大值;

(2)求总造价关于面积的函数,说明如何选取,使总造价最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于的不等式的解集为的解集为.

1)试求

2)是否存在实数,使得?若存在,求的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直平行六面体中,为棱上任意一点,为底面(除外)上一点,已知在底面上的射影为,若再增加一个条件,就能得到,现给出以下条件:

;②上;③平面;④直线在平面的射影为同一条直线.其中一定能成为增加条件的是__________.(把你认为正确的都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数处的切线与直线平行.

1)求实数

2)求函数的单调区间;

3)设 恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

(Ⅰ)求所取3张卡片上的数字完全相同的概率;

表示所取3张卡片上的数字的中位数,求的分布列与数学期望

(注:若三个数满足则称为这三个数的中位数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共14分)如图,在三棱锥中, 底面

,点分别在棱上,且)求证: 平面;()当的中点时,求与平面所成的角的大小;()是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

同步练习册答案