精英家教网 > 高中数学 > 题目详情
9.某旅行社为推广全民旅游计划,对某风景区旅游费用标准执行以下优惠:当人数不超过25人时,人均费用为1500元;当人数超过25人时,每增加1人,人均费用下降20元,但最低人均费用不能低于1000元.解答下列问题:
(1)已知某单位组织30人参加了该旅游计划,求人均费用是多少元?
(2)设某单位共有x(人),共支付了总旅游费用为y(元),求y与x之间的函数关系式;
(3)已知该单位现有45人,本次旅游至少去了26人,求该单位最多的旅游费用为多少元?

分析 (1)求出人均下降的费用即可.
(2)根据优惠政策,表示成分段函数关系即可.
(3)根据分段函数的表达式代入进行求解即可.

解答 解:(1)单位组织30人参加了该旅游计划,人数超过25人有人5,人均费用下降20×5=100元,则此时的人均费用为1500-100=1400.
(2)由题意可知:
当0≤x≤25时,y=1500x.
当25<x≤50时,y=x[1500-20(x-25)]
即y=-20x2+2000x,
当x>50时,y=1000x.
(2)由题意,得26≤x≤45,
所以选择函数关系式为:y=-20x2+2000x.
配方,得y=-20(x-50)2+50000,
∵a=-20<0,所以抛物线开口向下.
又因为对称轴是直线x=50.
∴当26≤x≤45时,此函数y随x的增大而增大.
∴当x=45时,y有最大值,
即y最大值=-20×(45-50)2+50000=49500(元)
因此,该单位最多应付旅游费49500元.

点评 本题主要考查函数的应用问题,根据条件建立函数关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{12}-\frac{y^2}{4}=1$的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是(  )
A.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$B.$\left?{-\sqrt{3},\sqrt{3}}\right?$C.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$D.$({-\sqrt{3},\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C的对边分别为a、b、c,A、$\frac{B}{4}$、C成等差数列.
(1)若b=$\sqrt{13}$,a=3,求c的值;
(2)设t=sinAsinC,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα+sinα}\\{y=2\sqrt{3}sinαcosα-2si{n}^{2}α+2}\end{array}\right.$(α为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立坐标系,曲线N的极坐标方程为ρsin($θ+\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(t为参数).
(1)求曲线M的普通方程和曲线N的直角坐标方程;
(2)若曲线N与曲线M有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥F-ABCD中,侧面ABF⊥底面ABCD,四边形ABCD为矩形,且AB=2,AD=AF=1,∠BAF=60°.O、P分别为AB、CB的中点,M为△OBF的重心.
(1)求证:PM∥平面AFC
(2)求证:平面ADF⊥平面CBF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策,已知某种酒每瓶70元,不加收附加税时,每年大约销售100万瓶,若政府征收附加税,每销售100元要征税R元(税率R%),则每年的销售量将减少10R万瓶,要使每年在此项经营中所收取的附加锐不少于112万元,R应怎样确定?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若集合A={x|x=$\frac{n}{2}$,n∈Z},B={x|x=$\frac{n}{3}$,n∈Z},则A∩B=Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若目标函数z=x+y+1在约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≤0}\\{y≤n}\\{x≥-3}\end{array}\right.$下取得最大值时的最优解有无数多个,则n∈($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a,b,c为不等正实数,且abc=1,求证:$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$<$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$.

查看答案和解析>>

同步练习册答案