精英家教网 > 高中数学 > 题目详情
11.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{5}{9}$D.$\frac{2}{3}$

分析 先求出连接两点所得的所有线段总数,再用列举法求出取到长度为$\sqrt{3}$的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率.

解答 解:∵点A,B,C,D,E,F是边长为1的正六边形的顶点,
连接任意两点均可得到一条线段,
∴连接两点所得的所有线段总数n=${C}_{6}^{2}$=15,
∵取到长度为$\sqrt{3}$的线段有:AC、AE、BD、BF、CE、DF,
∴在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为:
p=$\frac{6}{15}$=$\frac{2}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知$tanα=2,则\frac{{{{sin}^2}α-{{cos}^2}α+2}}{{2{{sin}^2}α+{{cos}^2}α}}$等于(  )
A.$\frac{13}{9}$B.$\frac{11}{9}$C.$\frac{6}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左焦点为(-2,0),离心率为$\frac{1}{2}$,则C的标准方程为(  )
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设m∈R,过定点A的动直线x+my=0和过定点B的直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的最大值是$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={log_{\frac{1}{2}}}({x^2}-2x-3)$的单调减区间是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数个位数字模糊,在茎叶图中用c表示.(把频率当作概率)
(Ⅰ)假设c=5,现要从甲,乙两人中选派一人参加数学竞赛,从统计学的角度,你认为派哪位学生参加比较合适?
(Ⅱ)假设数字c的取值是随机的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在等差数列{an}中,已知a3=5,S3=21,求a8与S7的值.
(2)在公比为2的等比数列{an}中,a3•a11=16,求a6的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,已知角$C=\frac{π}{3}$,a2+b2=4(a+b)-8,则边c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,向量$\overrightarrow{a}$,$\overrightarrow{b}$的位置如图所示,已知|$\overrightarrow{a}$|=|$\overrightarrow{OA}$|=4,|$\overrightarrow{b}$|=|$\overrightarrow{AB}$|=3,且∠AOx=45°,∠OAB=105°,请分别求出向量$\overrightarrow{a}$,$\overrightarrow{b}$的坐标.

查看答案和解析>>

同步练习册答案