精英家教网 > 高中数学 > 题目详情

【题目】下面给出的关系式中正确的个数是(
=
=
2=| |2
④( =
⑤| |≤
A.0
B.1
C.2
D.3

【答案】D
【解析】解:① =0,因此不正确;
= ,满足交换律,正确;
2=| |2 , 正确;
④由于 不一定共线,因此( = )不正确;
⑤由向量的数量积的运算性质即可得出:| |≤
综上可得:只有②③⑤正确.
故选:D.
=0,即可判断出;
②向量的数量积运算满足交换律;
2=| |2 , 不同的记法;
④由于 不一定共线,可知( = )不正确;
⑤由向量的数量积的运算性质即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数﹒图中三角形阴影部分的三个顶点为(0,0)、(4,0)和(0,4).

(1)若点P(a,b)落在如图阴影所表示的平面区域(包括边界)的事件记为A,求事件A的概率;
(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率P最大,求m和P的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E为PC的中点,且DE=EC.

(1)求证:PA⊥面ABCD;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈( ),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn满足Sn= an+n﹣3.
(1)求证:数列{an﹣1}是等比数列,并求{an}的通项公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),对任意n∈N*, + +…+ <k都成立,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+(y﹣2)2=25及直线l:(2m+1)x+(m+1)y=7m+4.(m∈R)
(1)证明:不论m取什么实数,直线l与圆C恒相交;
(2)求直线l与圆C所截得的弦长的最短长度及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圆:x2+y2+2x﹣4=0相切,则a的取值范围是(
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 ≤a≤7
D.a≥7或a≤﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P是椭圆 上一点,M、N分别是两圆:(x+4)2+y2=1和(x﹣4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值的分别为( )
A.9,12
B.8,11
C.8,12
D.10,12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的最小正周期和函数的单调递增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若 ,求AB.

查看答案和解析>>

同步练习册答案