精英家教网 > 高中数学 > 题目详情
14.已知双曲线x2-y2=1,则它的右焦点到它的渐近线的距离是$\frac{\sqrt{2}}{2}$.

分析 将双曲线的方程化为标准方程,可得a,b,c的值,渐近线方程,运用点到直线的距离公式,计算即可得到所求值.

解答 解:双曲线x2-y2=1,可得a=1,b=1,c=$\sqrt{2}$,
则右焦点(1,0)到它的渐近线y=x的距离为d=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查双曲线的焦点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在四棱锥P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C-ABE的体积为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5. 如图,三棱锥A-BCD中,DC⊥BD,BC=2$\sqrt{3}$,CD=AC=2,AB=AD=2$\sqrt{2}$.
(Ⅰ)证明:AB⊥CD;
(Ⅱ)求直线AC与平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.快递员通知小张中午12点到小区门口取快递,由于工作原因,快递员于11:50到12:10之间随机到达小区门口,并停留等待10分钟,若小张于12:00到12:10之间随机到达小区门口,也停留等待10分钟,则小张能取到快递的概率为(  )
A.$\frac{1}{2}$B.$\frac{7}{12}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将圆x2+y2=1上每一点的横坐标变为原来的2倍,纵坐标不变,得到曲线C.
(1)求曲线C的参数方程;
(2)求曲线C上的点P(x,y),使得$z=x-2\sqrt{3}y$取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在f1(x)=x${\;}^{\frac{1}{2}}$,f2(x)=x2,f3(x)=2x,f4(x)=log${\;}_{\frac{1}{2}}$x四个函数中,当x1>x2>1时,使$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立的函数是f1(x)=x${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α为锐角,满足$sin(\frac{π}{2}+2α)=cos(\frac{π}{4}-α)$,则sin2α=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若p是真命题,q是假命题,则(  )
A.p∧q是真命题B.p∨q是假命题C.¬p是真命题D.¬q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(-3)=-26.

查看答案和解析>>

同步练习册答案