精英家教网 > 高中数学 > 题目详情
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,斜率为1的直线与椭圆C交于不同两点M,N.
(1)求椭圆C的方程;
(2)设直线过点F(1,0),求线段的长;
(3)若直线过点(m,0),且以为直径的圆恰过原点,求直线的方程.
(1)椭圆C的方程;(2)线段的长为;(3)直线的方程为 .

试题分析:(1)根据椭圆的右焦点为F(1,0),点A(2,0)在椭圆C上,代入即可求得椭圆C的方程;(2)先用点斜式写出直线方程,再和椭圆方程联立,用弦长公式即可求出线段的长为;(3)设直线的方程为,直线与椭圆的两个交点设为,把直线方程与椭圆方程联立,表示出,而以线段为直径的圆恰好过原点,即;联立即可求出直线的方程为 .
试题解析:(1)由题意:
所求椭圆方程为.                                            4分
(2)由题意,直线的方程为:.
, 
所以.             6分
(3)设直线的方程为
消去y整理得.
因为直线l与椭圆C交于不同两点M、N,
所以
解得:


所以
因为以线段为直径的圆恰好过原点,所以
所以,即
解得.
所求直线的方程为               10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy中,已知椭圆C1=1,A1A2分别为椭圆C1的左、右顶点.椭圆C2以线段A1A2为短轴且与椭圆C1为“相似椭圆”.
 
(1)求椭圆C2的方程;
(2)设P为椭圆C2上异于A1A2的任意一点,过PPQx轴,垂足为Q,线段PQ交椭圆C1于点H.求证:H为△PA1A2的垂心.(垂心为三角形三条高的交点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形F1B1 F2B2是一个面积为8的正方形.

(1)求椭圆C的方程;
(2)已知点P的坐标为P(-4,0), 过P点的直线L与椭圆C相交于M、N两点,当线段MN的中点G落在正方形内(包含边界)时,求直线L的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.

(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆=1(a>b>0)的左、右顶点分别是AB,左、右焦点分别是F1F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知椭圆=1(ab>0)的右焦点为F2(1,0),点A在椭圆上.

(1)求椭圆方程;
(2)点M(x0y0)在圆x2y2b2上,点M在第一象限,过点M作圆x2y2b2的切线交椭圆于PQ两点,问||+||+||是否为定值?如果是,求出该定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1的左、右焦点分别为F1F2M是椭圆上一点,NMF1的中点,若|ON|=1,则|MF1|等于(  ).
A.2B.4C.6D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,过的直线交椭圆于两点,,则 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1,F1、F2分别为其左、右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|的长为(  )
A.1B.2C.3  D.4

查看答案和解析>>

同步练习册答案