精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=

(1)f(x)的定义域为 (∞,+∞)求实数a的范围;

(2)f(x)的值域为 [0, +∞), 求实数a的范围

【答案】(1) (2)

【解析】试题分析:(1)问题可转化为(a21x2+(a+1)x+10对一切x∈R恒成立,然后分类讨论,借助二次函数的图像与性质求实数a的范围;(2)问题可转化为只要t=(a21)x2+(a+1)x+1能取到所有的正数,同样分类讨论,利用二次函数的图像与性质求实数a的范围.

试题解析:

(1)依题意可得:(a21x2+(a+1)x+10对一切x∈R恒成立;

1

a21≠0时,即

a<-1.

(2)依题意可得:只要t=(a21)x2+(a+1)x+1能取到所有的正数;

t=1

a21≠0时,即1a; 1≤a

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,在处取得极值

(1)求的值;

(2)若对任意的,都有成立,(其中是函数的导函数),求实数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形均为直角梯形平面平面

(1)求证:平面

(2)求平面和平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,侧面底面,且,分别为的中点.

(1)求证:平面

(2)在线段上是否存在点,使得二面角的余弦值为,若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=x2-4|x|-5.

(Ⅰ)画出y=fx)的图象;

(Ⅱ)设A={x|fx)≥7},求集合A;

(Ⅲ)方程fx)=k+1有两解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单位正方体 中,O 的中点,如图建立空间直角坐标系.

(1)求证 ∥平面

(2)求异面直线OD夹角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.

分数

甲班频数

5

6

4

4

1

一般频数

1

3

6

5

5

(1)由以下统计数据填写下面列联表,并判断能否在犯错误的额概率不超过0.025的前提下认为“成绩优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

附:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下的对应数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+

参考公式:用最小二乘法求线性回归方程系数公式 .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.

1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;

2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.

查看答案和解析>>

同步练习册答案