精英家教网 > 高中数学 > 题目详情

【题目】直三棱柱中,底面为等腰直角三角形, 是侧棱上一点,设

(1) 若,求的值;

(2) 若,求直线与平面所成的角.

【答案】(1)(2)

【解析】试题分析:(1)以为坐标原点,以射线分别为轴建立空间直角坐标系,求出 ,利用,求出的值;(2)求出直线的方向向量与平面的法向量,求出向量的夹角的余弦值可得结果.

试题解析:(1)以为坐标原点,以射线分别为轴建立空间直角坐标系,如图所示,

,

,即

解得

(2) 解法一:此时

设平面的一个法向量为

所以

设直线与平面所成的角为

所以直线与平面所成的角为

解法二:联结,则

平面

平面

所以是直线与平面所成的角;

中,

所以

所以

所以直线与平面所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设直线与圆交于MN两点,且MN关于直线对称.

(1)求mk的值;

(2)若直线与圆CPQ两点,是否存在实数a使得OPOQ,如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为

(1)求椭圆的方程;

(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆两点为圆的直径,且直线的斜率大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:xA,且A={x|a﹣1xa+1},命题q:xB,且B={x|x2﹣4x+3≥0}

(Ⅰ)若A∩B=A∪B=R,求实数a的值;

(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:
①若 <0,则 + >2;
②若a>b,则am2>bm2
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2﹣ax+1≥0,则0<a≤4.
其中是真命题的有(
A.①②
B.②③
C.①③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,a2=6,a2+a3=24,在等差数列{bn}中,b1=a1 , b3=﹣10.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议()不改变车票价格,减少支出费用;建议()不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则

A. ①反映了建议(Ⅱ),③反映了建议(Ⅰ)

B. ①反映了建议(Ⅰ),③反映了建议(Ⅱ)

C. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)

D. ④反映了建议(Ⅰ),②反映了建议(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.

)计算渔政船C与渔港O的距离;

)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?

(参考数据:sin68.20°≈0.93tan68.20°≈2.50shin63.43°≈0.90tan63.43°≈2.00 ≈3.62 ≈3.61

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体为棱的中点.

Ⅰ)求证:平面

Ⅱ)求证:平面平面

Ⅲ)若正方体棱长为,求三棱锥的体积.

查看答案和解析>>

同步练习册答案