精英家教网 > 高中数学 > 题目详情
1.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$,这z=$\frac{1}{3}$x-y的最小值是-2,$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$的取值范围是[-1,1].

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数求得z=$\frac{1}{3}$x-y的最小值;然后利用$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$的几何意义,即可行域内的动点((1,0)除外)(x,y)与定点(1,0)横坐标的差除以与定点(1,0)的距离,对x分类求得$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$的取值范围,取并集得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{y=x}\\{2x+y-9=0}\end{array}\right.$,解得A(3,3),
化目标函数z=$\frac{1}{3}$x-y为y=$\frac{x}{3}-z$,
由图可知,当直线y=$\frac{x}{3}-z$过A(3,3)时,直线在y轴上的截距最大,z有最小值为$\frac{3}{2}-3=-2$;
$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$的几何意义为可行域内的动点((1,0)除外)(x,y)与定点(1,0)横坐标的差除以与定点(1,0)的距离,
当x>1时,0<$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$≤1;
当x=1(y≠0)时,$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$=0;
当0≤x<1时,-1≤$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$<0.
∴$\frac{x-1}{{\sqrt{{{(x-1)}^2}+{y^2}}}}$的取值范围是[-1,1].
故答案为:-2,[-1,1].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.用弧度制表示终边落在直线y=x上的角集为{α|α=k$π+\frac{π}{4},k∈Z$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}ln|tx|-ln(x+1),x>-1且x≠0}\\{tx+{t}^{2}-2,x≤-1}\end{array}\right.$,恰有一个零点,则实数t的取值范围是(-4,-1)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ln(x+1)-x(x>-1).
(1)求f(x)的单调区间;
(2)若k∈Z,且f(x-1)+x>k(1-$\frac{3}{x}$)对任意x>1恒成立,求k的最大值;
(3)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得e${\;}^{f({x}_{0})}$<1-$\frac{a}{2}$x02成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x-1,则f($\frac{2}{3}$),f($\frac{3}{2}$),f($\frac{1}{3}$)的大小关系是(  )
A.f($\frac{2}{3}$)<f($\frac{3}{2}$)<f($\frac{1}{3}$)B.f($\frac{1}{3}$)<f($\frac{2}{3}$)<f($\frac{3}{2}$)C.f($\frac{1}{3}$)<f($\frac{3}{2}$)<f($\frac{2}{3}$)D.f($\frac{3}{2}$)<f($\frac{1}{3}$)<f($\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=2,an=2an-1+2(n≥2),令bn=an+2.
(1)证明{bn}是等比数列;
(2)令cn=$\frac{{{log}_{2}b}_{n}}{{b}_{n}}$,Tn是数列{cn}的前n项和,若对任意的正数a,b,不等式5a2+4b2≥a(a+b)($\frac{3}{2}-T$n)2n恒成立,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.比较大小:($\frac{4}{5}$)0.5<($\frac{9}{10}$)${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若直线x+(a-1)y+1=0与直线ax+2y+2=0垂直,则实数a的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过右焦点F2的直线交椭圆于A、B两点,且AF2=2F2B,tan∠AF1B=$\frac{3}{4}$,则该椭圆的离心率等于$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步练习册答案