精英家教网 > 高中数学 > 题目详情
6.已知正项数列{an}的前n项和为Sn,且a1=2,4Sn=an•an+1,n∈N+
(1)求数列的通项公式an
(2)求前n项和Sn

分析 (1)4Sn=an•an+1,n∈N+.可得当n=1时,4a1=a1•a2,解得a2=4.当n≥2时,4Sn-1=an-1an,可得an+1-an-1=4.因此数列{an}的奇数项与偶数项分别为等差数列,公差都为4.进而得到该数列是等差数列,首项为2,公差为2.可得an
(2)利用等差数列的前n项和公式即可得出.

解答 解:(1)∵4Sn=an•an+1,n∈N+
∴当n=1时,4a1=a1•a2,解得a2=4.
当n≥2时,4Sn-1=an-1an,可得4an=an(an+1-an-1),
∵数列{an}的各项为正数,∴an+1-an-1=4.
∴数列{an}的奇数项与偶数项分别为等差数列,公差都为4.
∴a2k-1=2+4(k-1)=4k-2=2n,a2k=4+4(k-1)=4k=2n.
∴该数列是等差数列,首项为2,公差为2.
∴an=2+2(n-1)=2n.
(2)Sn=$\frac{n(2+2n)}{2}$=n2+n.

点评 本题考查了等差数列的通项公式及其前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若∠A,∠B,∠C为△ABC的三个内角,则下列错误的是(  )
A.sinA=-sin(B十C)B.cosA=-cos(B+C)C.tanA=-tan(B+C)D.cos(A+B)+cosC=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的值域;
(1)y=cos(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$];
(2)y=cos2x-4cosx+5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若3<3x<27,则满足条件的x取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知y=f(x)是奇函数,且满足f(x+2)+3f(-x)=0,当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值为-$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\sqrt{lg[\frac{11}{2}-9cos(x+\frac{π}{6})]}$≤1,则函数y=$\frac{1}{ta{n}^{2}x}$-2$\frac{1}{tanx}$+5的值域是[4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设角x的终边不在坐标轴上,求函数y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x-$\frac{1}{{x}^{m}}$,x∈(0,+∞),且f(3)=$\frac{8}{3}$.
(1)判断f(x)的奇偶性;
(2)研究f(x)在定义域内的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R上的奇函数,且f(1)=$\frac{3}{2}$.
(1)求k与a的值;
(2)若关于x的不等式f(x)-2m+m•(4x+4-x)≤2在x∈[1,2]上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案