精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+,h(x)=
(Ⅰ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值;
(Ⅱ)设a∈R,解关于x的方程lg[f(x-1)-]=2lgh(a-x)-2lgh(4-x);
(Ⅲ)设n∈Nn,证明:f(n)h(n)-[h(1)+h(2)+…+h(n)]≥
【答案】分析:(Ⅰ)首先求出F(x)的解析式,求导,令导数大于0和小于0,分别求出单调增区间和减区间,从而可求极值.
(Ⅱ)将方程转化为lg(x-1)+2lg=2lg,利用对数的运算法则,注意到真数大于0,转化为等价的不等式,分离参数a,求解即可.
(Ⅲ)由已知得h(1)+h(2)+…+h(n)=
故原不等式转化为f(n)h(n)-=
注意到等式右侧为数列{bn}:bn=和的形式,将等式的左侧也看作一个数列的前n项和的形式,
求出通项.问题转化为证明项>项的问题.可用做差法直接求解.
解答:解:(Ⅰ)F(x)=18f(x)-x2[h(x)]2=-x3+12x+9(x≥0)
所以F′(x)=-3x2+12=0,x=±2
且x∈(0,2)时,F′(x)>0,当x∈(2,+∞)时,F′(x)<0
所以F(x)在(0,2)上单调递增,在(2,+∞)上单调递减.
故x=2时,F(x)有极大值,且F(2)=-8+24+9=25
(Ⅱ)原方程变形为lg(x-1)+2lg=2lg
??
(1)当1<a<4时,原方程有一解x=3-
(2)当4<a<5时,原方程有两解x=3±
(3)当a=5时,原方程有一解x=3
(4)当a≤1或a>5时,原方程无解.
(Ⅲ)由已知得h(1)+h(2)+…+h(n)=
f(n)h(n)-=
从而a1=s1=1
当k≥2时,an=sn-sn-1=
=
=
=>0
即对任意的k≥2,有
又因为a1=1=
所以a1+a2+…+an
则sn≥h(1)+h(2)+…+h(n),故原不等式成立.
点评:本题考查求函数的单调区间、极值、方程解的个数问题、不等式证明问题,综合性强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案