精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,SABC= ,c=2,f(C+ )= .求a,b的值.

【答案】
(1)解:f(x)=sin(2x+ )﹣cos2x= sin2x+ cos2x﹣ (2cos2x﹣1)﹣

= sin2x﹣

f(x)的最小正周期π,

x∈[ ],2x∈[ ],

f(x)的值域[﹣ ];


(2)解:f(x)= sin2x﹣

f(C+ )= sin2(C+ )﹣ =

∴sin(2C+ )= ,cos2C= ,角C为锐角,

C=

S= ,SABC=

ab=4

由余弦定理可知:c2=a2+b2﹣2abcosC,

a2+b2=16,

解得b=2,a=2 或b=2 ,a=2,


【解析】(1)由两角和的正弦公式及二倍角公式,化简求得f(x)═ sin2x﹣ ,根据正弦函数的图象和性质,求出周期和f(x)的值域;(2)f(C+ )= ,求得C= ,由三角形的面积公式求得ab=4 ,余弦定理求得a2+b2=16,联立求得a、b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣2ax﹣8a2(a>0),记不等式f(x)≤0的解集为A.
(1)当a=1时,求集合A;
(2)若(﹣1,1)A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC.

(1)求证:平面AEF⊥平面PBC.

(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(I)求异面直线所成角的余弦值;

(II)求证: 平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长为1的正方体ABCD-A1B1C1D1中,点E,F,M分别是AB,AD,AA1的中点,又P,Q分别在线段A1B1A1D1上,且A1P=A1Q=x,0<x<1,设平面MEF∩平面MPQ=l,则下列结论中不成立的是 (  )

A. l∥平面ABCD

B. l⊥AC

C. 平面MEF与平面MPQ不垂直

D. 当x变化时,l不是定直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年存节期间,某服装超市举办了一次有奖促销活动,消费每超过600 元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种. 方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球,则打6折;若摸到1个红球,则打7折;若没摸到红球,则不打折.
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若两个顾客均分别消费了 600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积;

(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积;

(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自地面垂直向上发射火箭,火箭的质量为m,试计算将火箭发射到距地面的高度为h时所做的功.

查看答案和解析>>

同步练习册答案