(本题满分10分)
如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求异面直线AF与BG所成的角的大小;
(2)求平面APB与平面CPD所成的锐二面角的余弦值
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 14分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:;
(Ⅱ)求证:平面平面;
(Ⅲ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在平面内,ABCD是且的菱形,和都是正方形。将两个正方形分别沿AD,CD折起,使与重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。
(1)设二面角E – AC – D1的大小为q,若,求的取值范围;
(2)在线段上是否存在点,使平面平面,若存在,求出分所成的比;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
如图,在六面体中,平面∥平面,
⊥平面,,,
∥.且,.
(1)求证: ∥平面;
(2)求二面角的余弦值;
(3) 求五面体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com