【题目】已知函数 (,为自然对数的底数,).
(1)若函数仅有一个极值点,求实数的取值范围;
(2)证明:当时,有两个零点().且满足.
【答案】(1);(2)证明见解析.
【解析】试题分析:
(1)由函数的解析式可得,则满足题意时,方程必无解,分类讨论:①当时,符合题意;②当时,,据此可得.即实数的取值范围是.
(2)由(1)的结论可得,知当时,为的唯一极小值点,且,,则,故.要证明,即证.,可转化为,即,据此构造函数,结合函数的性质可知在区间上是减函数,,等价于成立,则原命题得证.
试题解析:
(1)
,
由,得或
因为仅有一个极值点,
所以关于的方程必无解,
①当时,无解,符合题意;
②当时,由,得,
故由,得.
故当时,若,
则,此时为减函数,
若,则,此时为增函数,
所以为的唯一极值点,
综上,可得实数的取值范围是.
(2)由(1),知当时,为的唯一极值点,且是极小值点,
又因为当时,,
,,
所以当时,有一个零点,
当时,有另一个零点,
即,
且,
.①
所以.
下面再证明,即证.
由,得,
因为当时,为减函数,
故只需证明,
也就是证明,
因为,
由①式,
可得.
令,
则.
令,
因为为区间上的减函数,且,所以,即
在区间上恒成立,
所以在区间上是减函数,即,所以,
即证明成立,
综上所述,.
科目:高中数学 来源: 题型:
【题目】已知函数 有极值,且函数的极值点是的极值点,其中是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)
(1)求关于的函数关系式;
(2)当时,若函数的最小值为,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是 ( )
A. “若,则,或”的否定是“若则,或 ”
B. a,b是两个命题,如果a是b的充分条件,那么是的必要条件.
C. 命题“,使 得”的否定是:“,均有 ”
D. 命题“ 若,则”的否命题为真命题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数(首项)按照上述规则进行变换后的第9项为1(注:1可以多次出现),则的所有不同值的个数为( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图。
分组 | 频数 | 频率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合计 | 1.00 |
(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算学生成绩的平均数及中位数。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,直线.
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
【答案】(1);(2)答案见解析.
【解析】试题分析:
(1)设所求直线方程为,利用圆心到直线的距离等于半径可得关于b的方程,解方程可得,则所求直线方程为
(2)方法1:假设存在这样的点,由题意可得,则,然后证明为常数为即可.
方法2:假设存在这样的点,使得为常数,则,据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.
试题解析:
(1)设所求直线方程为,即,
∵直线与圆相切,∴,得,
∴所求直线方程为
(2)方法1:假设存在这样的点,
当为圆与轴左交点时,;
当为圆与轴右交点时,,
依题意,,解得,(舍去),或.
下面证明点对于圆上任一点,都有为一常数.
设,则,
∴ ,
从而为常数.
方法2:假设存在这样的点,使得为常数,则,
∴,将代入得,
,即
对恒成立,
∴,解得或(舍去),
所以存在点对于圆上任一点,都有为常数.
点睛:求定值问题常见的方法有两种:
(1)从特殊入手,求出定值,再证明这个值与变量无关.
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
【题型】解答题
【结束】
22
【题目】已知函数的导函数为,其中为常数.
(1)当时,求的最大值,并推断方程是否有实数解;
(2)若在区间上的最大值为-3,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数的定义域为R,且存在实常数,使得对于定义域内任意,都有成立,则称此函数为“完美函数”.
(1)判断函数是否为“完美函数”.若它是“完美函数”,求出所有的的取值的集合;若它不是,请说明理由.
(2)已知函数是“完美函数”,且是偶函数.且当0时,.求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com