精英家教网 > 高中数学 > 题目详情

【题目】已知各项均为正数的数列的首项 是数列的前项和,且满足:

.

(1)若成等比数列,求实数的值;

(2)若,求证:数列为等差数列;

(3)在(2)的条件下,求.

【答案】(1)1;(2)证明见解析;(3) .

【解析】试题分析:(1)在题中等式中分号令n=1,2,3,解出(用表示),利用解得。(2)由于要证数列为等差数列,所以要构出相除的形式,只需把题中等式两边同时除以,即可证。(3)由(2).再由解得代入上式中可得

试题解析:(1)令,得

,得,所以

,得,因为,所以.

(2)当时,

所以,即

所以数列是以2为首项,公差为的等差数列,

所以,即.

(3),①

时, ,②

①-②得,

,所以

所以是首项为的常数列,所以

代入①得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于n∈N* , 若数列{xn}满足xn+1﹣xn>1,则称这个数列为“K数列”.
(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;
(Ⅱ)是否存在首项为﹣1的等差数列{an}为“K数列”,且其前n项和Sn满足 ?若存在,求出{an}的通项公式;若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列{an}是“K数列”,数列 不是“K数列”,若 ,试判断数列{bn}是否为“K数列”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中a的值;
(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

晋级成功

晋级失败

合计

16

50

合计

(参考公式:K2= ,其中n=a+b+c+d)

P(K2≥k)

0.40

0.25

0.15

0.10

0.05

0.025

k

0.780

1.323

2.072

2.706

3.841

5.024


(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(满分12分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:


损坏餐椅数

未损坏餐椅数

总 计

学习雷锋精神前

50

150

200

学习雷锋精神后

30

170

200

总 计

80

320

400

)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

)请说明是否有975%以上的把握认为损毁餐椅数量与学习雷锋精神有关?

参考公式:

PK2≥k0

005

0025

0010

0005

0001

k0

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点,直线l(其中).

Ⅰ)求直线l所经过的定点P的坐标;

Ⅱ)若分别过AB且斜率为的两条平行直线截直线l所得线段的长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是
(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E(ξ).( 结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图像如图所示,分别是图像的最低点和最高点,

(1)求函数的解析式;

(2)将函数的图像向左平移个单位长度,再把所得图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数的图像,求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在同一平面内,点P位于两平行直线l1、l2两侧,且P到l1 , l2的距离分别为1,3,点M,N分别在l1 , l2上,| + |=8,则 的最大值为(
A.15
B.12
C.10
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[5090)之外的人数.

查看答案和解析>>

同步练习册答案