精英家教网 > 高中数学 > 题目详情

【题目】已成椭圆 的离心率为 .其右顶点与上顶点的距离为 ,过点 的直线 与椭圆 相交于 两点.
(1)求椭圆 的方程;
(2)设 中点,且 点的坐标为 ,当 时,求直线 的方程.

【答案】
(1)

由题意可知: ,又

,所以椭圆 的方程为


(2)

①若直线 的斜率不存在,此时 为原点,满足 ,所以,方程为

②若直线 的斜率存在,设其方程为

将直线方程与椭圆方程联立可得

,即

可得

,则

可知

化简得

解得 ,将结果代入 验证,舍掉

此时,直线 的方程为

综上所述,直线 的方程为 .


【解析】(1)易知焦点在x轴上,原点到右顶点的距离为a,原点到上顶点的距离为b,依据题意有a+b=5,然后根据离心率即可求出a、b的值;(2)分两种情况进行讨论:①斜率不存在时;②斜率存在时,设出直线方程,表示出M的坐标,通过QM⊥AB,求出直线的斜率,进而求出直线方程。
【考点精析】关于本题考查的椭圆的概念和椭圆的标准方程,需要了解平面内与两个定点的距离之和等于常数(大于)的点的轨迹称为椭圆,这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距;椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面ABCD是菱形,∠ABC=60°,AB=PC=2,

(1)求证:平面PAD⊥平面ABCD;
(2)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别是椭圆C: =1(a>b>0)的两个焦点,P(1, )是椭圆上一点,且 |PF1|,|F1F2|, |PF2|成等差数列.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F2 , 且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得 =﹣ 恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若(x2﹣a)(x+ 10的展开式中x6的系数为30,则 (3x2+1)dx=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+5x.
(1)当a=﹣1时,求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1时有f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入的a的值为3,则输出的i=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,该程序运行后输出的结果是(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为△ABC内一点,且 ,若B,O,D三点共线,则t的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4 . (Ⅰ)设M是线段PC上的一点,证明:平面BDM⊥平面PAD
(Ⅱ)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

同步练习册答案