【题目】某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
(1)若从以上五家“农家乐”中随机抽取两家深人调查,记为“入住率超过0.6的农家乐的个数,求的概率分布列
(2)z=lnx,由散点图判断与哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a,的结果精确到0.1)
(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率×收费标准x)
参考数据, ,
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当b=0时,求函数的极小值;
(2)若已知b>1且函数与直线y=-x相切,求b的值;
(3)在(2)的条件下,函数与直线y=-x+m有三个公共点,求m的取值范围.(直接写出答案)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线y2=4x焦点F的直线交抛物线于A、B两点,交其准线于点C,且A、C位于x轴同侧,若|AC|=2|AF|,则|BF|等于( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A. 命题“若,则”的逆命题是真命题
B. 命题“存在”的否定是:“任意”
C. 命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
D. 已知,则“”是“”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴建立极坐标系,点的极坐标,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若为曲线上的动点,求中点到直线的距离最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com