精英家教网 > 高中数学 > 题目详情

设函数数学公式
(Ⅰ) 当a>1时,讨论函数f(x)的单调性.
(Ⅱ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

解:(Ⅰ)===…(5分)
,即a=2时,,f(x)在(0,+∞)上是减函数;
,即a>2时,令f′(x)<0,得或x>1;
令f′(x)>0,得
,即1<a<2时,令f′(x)<0,得0<x<1或
令f′(x)>0,得.…(7分)
综上,当a=2时,f(x)在定义域上是减函数;
当a>2时,f(x)在和(1,+∞)单调递减,在上单调递增;
当1<a<2时,f(x)在(0,1)和单调递减,在上单调递…(8分)
(Ⅱ)由(Ⅰ)知,当a∈(2,3)时,f(x)在[1,2]上单调递减,
∴当x=1时,f(x)有最大值,当x=2时,f(x)有最小值.

∴ma+ln2>(10分)
而a>0经整理得由2<a<3得,所以m≥0.(12分)
分析:(Ⅰ)求导函数,分类讨论,利用导数的正负,可得函数的单调性;
(Ⅱ)由(Ⅰ)知,当a∈(2,3)时,f(x)在[1,2]上单调递减,从而|f(x1)-f(x2)|≤f(1)-f(2),进而可得ma+ln2>,由此可得实数m的取值范围.
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分高☆考♂资♀源*12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省原名校高三下学期第二次联考文科数学试卷(解析版) 题型:解答题

设函数

(1)当a=l时,求函数的极值;

(2)当a2时,讨论函数的单调性;

(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求

实数m的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省高三上学期第二次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

查看答案和解析>>

科目:高中数学 来源:2015届广东省陆丰市高一第一次月考数学试卷(解析版) 题型:解答题

(不计入总分):已知函数,设函数

(3)当a≠0时,求上的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省高三教学质量监测理科数学卷 题型:解答题

(选修4—5:不等式选讲)设函数

(1)当a=-5时,求函数的定义域。

(2)若函数的定义域为R,求实数a的取值范围。

 

查看答案和解析>>

同步练习册答案