精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3﹣ax2+bx+c(a,b,c∈R).

(1)若函数f(x)在x=﹣1和x=3处取得极值,试求a,b的值;

(2)在(1)的条件下,当x∈[﹣2,6]时,f(x)<2|c|恒成立,求c的取值范围.

【答案】(1); (2)(-∞,-18)∪(54,+∞).

【解析】

(1)根据函数的极值的概念得到方程组解出参数值即可;(2)对函数求导得到函数的单调性和极值,进而得到函数的最大值为c+54,要使f(x)<2|c|恒成立,只要c+54<2|c|即可.

(1)f′(x)=3x2-2ax+b,

∵函数f(x)在x=-1和x=3处取得极值,

∴-1,3是方程3x2-2ax+b=0的两根.

.

经检验满足题意.

(2)由(1)知f(x)=x3-3x2-9x+c,

f′(x)=3x2-6x-9.令f′(x)=0,得x=-1或x=3.

当x变化时,f′(x),f(x)随x的变化情况如下表:

而f(-2)=c-2,f(6)=c+54,

∴当x∈[-2,6]时,f(x)的最大值为c+54,

要使f(x)<2|c|恒成立,只要c+54<2|c|即可,

当c≥0时,c+54<2c,∴c>54 ,

当c<0时,c+54<-2c,∴c<-18.

∴c∈(-∞,-18)∪(54,+∞),此即为实数c的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中,.

1)判断数列是否为等比数列?并说明理由;

2)若对任意正整数恒成立,求首项的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,.

Ⅰ)求椭圆的方程;

Ⅱ)是否存在定点使得为定值?若存在,求出点坐标并求出此定值;若不存在,说明理由.

【答案】(Ⅰ).

【解析】试题分析:(1)当轴重合时,垂直于轴,得,,从而得椭圆的方程;(2)由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,所以把坐标化,可得点的轨迹是椭圆,从而求得定点和点.

试题解析:轴重合时,, ,所以垂直于轴,得, ,椭圆的方程为.

焦点坐标分别为, 当直线斜率不存在时,点坐标为;

当直线斜率存在时,设斜率分别为, , 得:

, 所以:, 则:

. 同理:, 因为

, 所以, , 由题意知, 所以

, 设,则,即,由当直线斜率不存在时,点坐标为也满足此方程,所以点在椭圆.存在点和点,使得为定值,定值为.

考点:圆锥曲线的定义,性质,方程.

【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量,得,,从而得椭圆的方程,第二问由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把坐标化,求得点的轨迹方程是椭圆,从而求得存在两定点和点.

型】解答
束】
21

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C的对边分别是a、b、c,且2sin2A+3cos(B+C)=0.

(1)求角A的大小;

(2)若△ABC的面积S=,求sinB+sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex1+alnx.(e为自然对数的底数),λmin{a+25}.(min{ab}表示ab中较小的数.)

1)当a0时,设gx)=fx)﹣x,求函数gx)在[]上的最值;

2)当x1时,证明:fx+x2λx1+2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,存在,使得函数在区间上有两个极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔业公司今年初用98万元购进一艘远洋渔船,每年的捕捞可有50万元的总收入,已知使用年()所需(包括维修费)的各种费用总计为万元.

1)该船捞捕第几年开始赢利(总收入超过总支出,今年为第一年)?

2)该船若干年后有两种处理方案:

①当赢利总额达到最大值时,以8万元价格卖出;

②当年平均赢利达到最大值时,以26万元卖出,问哪一种方案较为合算?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】挑选空间飞行员可以说是“万里挑一”,要想通过需要五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.50.60.75,能通过文考关的概率分别是0.60.50.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.

1)求甲被录取成为空军飞行员的概率;

2)求甲、乙、丙三位同学中恰好有一个人通过复检的概率;

3)设只要通过后三关就可以被录取,求录取人数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:,平均每趟地铁的载客人数(单位:人)与发车时间间隔近似地满足下列函数关系:,其中

1)若平均每趟地铁的载客人数不超过1000人,试求发车时间间隔t的值;

2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少分钟时,平均每趟地铁每分钟的净收益最大? 并求出最大净收益.

查看答案和解析>>

同步练习册答案