【题目】如图ABCD﹣A1B1C1D1是长方体,O是B1D1的中点,直线AC1交平面CB1D1于点M,则下列结论正确的是( )
A.C,M,O三点共线
B.C,M,O,A1不共面
C.A,M,O,C不共面
D.B,M,O,B1共面
科目:高中数学 来源: 题型:
【题目】近几年,电商行业的蓬勃发展也带动了快递业的高速发展.某快递配送站每天至少要完成1800件包裹的配送任务,该配送站有8名新手快递员和4名老快递员,但每天最多安排10人进行配送.已知每个新手快递员每天可配送240件包裹,日工资320元;每个老快递员每天可配送300件包裹,日工资520元.
(Ⅰ)求该配送站每天需支付快递员的总工资最小值;
(Ⅱ)该配送站规定:新手快递员某个月被评为“优秀”,则其下个月的日工资比这个月提高12%.那么新手快递员至少连续几个月被评为“优秀”,日工资会超过老快递员?
(参考数据: , , .)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的左、右焦点分别为F1、F2 , 离心率 ,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为1.
(1)求椭圆E的方程;
(2)已知直x﹣y+m=0与椭圆E交于不同的两点A,B,且线AB的中点不在圆 内,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣2x﹣2ay+a2﹣24=0(a∈R)的圆心在直线2x﹣y=0上.
(1)求实数a的值;
(2)求圆C与直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)相交弦长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.
(1)求曲线C的直角坐标方程;
(2)若曲线C1: (α为参数)与曲线C所表示的图形都相切,求r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)= 满足f(0)=0.
(1)求a,f(﹣2)的值,判断函数f(x)的奇偶性并说明理由;
(2)判断该函数在R上的单调性(不要求证明),解不等式f(x2+x)< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,定义在[﹣1,5]上的函数f(x)由一段线段和抛物线的一部分组成. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)指出函数f(x)的自变量x在什么范围内取值时,函数值大于0,小于0或等于0(不需说理由).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com