【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量(单位:克)分别在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400]中,经统计得频率分布直方图如图所示.
(1)现按分层抽样的方法从质量为[250,300),[300,350)内的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在[300,350)内的概率;
(2)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10 000个,经销商提出如下两种收购方案:A方案:所有芒果以10元/千克收购;B方案:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购.通过计算确定种植园选择哪种方案获利更多?
【答案】(1);(2)B方案
【解析】
(1)利用枚举法求出所有可能的情况,再利用古典概型概率公式求解即可.
(2)分别计算两种方案的获利再比较大小即可.
(1)设质量在[250,300)内的4个芒果分别为A,B,C,D,质量在[300,350)内的2个芒果分别为a,b.从这6个芒果中选出3个的情况共有(A,B,C),(A,B,D),(A,B,a),(A,B,b),(A,C,D),(A,C,a),(A,C,b),(A,D,a),(A,D,b),(A,a,b),(B,C,D),(B,C,a),(B,C,b),(B,D,a),(B,D,b),(B,a,b),(C,D,a),(C,D,b),(C,a,b),(D,a,b),共计20种.其中恰有1个在[300,350)内的情况有(A,B,a),(A,B,b),(A,C,a),(A,C,b),(A,D,a),(A,D,b),(B,C,a),(B,C,b),(B,D,a),(B,D,b),(C,D,a),(C,D,b),共计12种,
因此概率P==.
(2)方案A:
(125×0.002+175×0.002+225×0.003 +275×0.008+325×0.004+375×0.001) ×50×10 000×10×0.001=25 750(元).
方案B:
由题意得低于250克:
(0.002+0.002+0.003)×50×10 000×2=7 000(元);
高于或等于250克:
(0.008+0.004+0.001)×50×10 000×3=19 500(元),
所以共获利7 000+19 500=26 500(元).
由于25 750<26 500,
故B方案获利更多,应选B方案.
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线C:1(a>0,b>0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为( )
A.y=±xB.y=±xC.y=±2xD.y=±x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某杂肉观赏区改造建筑用地平面示意图如图所示、经规划调研确定,杂肉观赏区改造规划建筑用地区域是半径为的圆,该圆面的内接四边形是原杂肉观赏区建筑用地,测量可知边界千米,千米,千米.
(1)请计算原杂肉观赏区建筑用地的面积及圆面的半径的值;
(2)因地理条件的限制,边界、不能变更,而边界、可以调整,为了提高杂肉观赏区观赏的时长,请在圆弧上设计一点,使得杂肉观赏区改造的新建筑用地的周长最大,并求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在上任意一点处的切线为,若过右焦点的直线交椭圆:于、两点,在点处切线相交于.
(1)求点的轨迹方程;
(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于两点,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a=2,_______,求△ABC的周长l的范围.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:这三个条件中任选一个,补充在上面问题中并对其进行求解.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com