精英家教网 > 高中数学 > 题目详情
(18)已知的周长为,且.

(I)求边的长;

(II)若的面积为,求角的度数.

解:(I)由题意及正弦定理,得

两式相减,得.

(II)由的面积,得

由余弦定理,得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线与椭圆有公共的焦点为F1(0,-4),F2(0,4),它们的离心率之和为
145
,P为椭圆上一点,△PF1F2的周长为18
(1)求椭圆的离心率和椭圆的标准方程.
(2)求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
9
+
y2
25
=1
的两个焦点,A为椭圆上一点,则三角形AF1F2的周长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株.现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:
树干周长(单位:cm) [30,40) [40,50) [50,60) [60,70)
株数 4 18 x 6
则x的值为
12
12
;若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.则排查的树木恰好为2株的概率为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
4
5
,两焦点为F1,F2,B1,B2为椭圆C短轴的两端点,动点M在椭圆C上.且△MF1F2的周长为18.
(I)求椭圆C的方程;
(II)当M与B1,B2不重合时,直线B1M,B2M分别交x轴于点K,H.求
OH
OK
的值;
(III)过点M的切线分别交x轴、y轴于点P、Q.当点M在椭圆C上运动时,求|PQ|的最小值;并求此时点M的坐标.

查看答案和解析>>

同步练习册答案