精英家教网 > 高中数学 > 题目详情
21、如图,在正四棱柱ABCD-A1B1C1D1中,E是DD1的中点.
(1)求证:BD1∥平面ACE;
(2)求证:平面ACE⊥平面B1BDD1
分析:(1)设AC和BD交于点O,由三角形的中位线的性质可得EO∥BD1,从而证明直线BD1∥平面ACE.
(2)证明AC⊥BD,DD1⊥AC,可证AC⊥面BDD1B1,进而证得平面ACE⊥平面BDD1B1
解答:证明:(1)设AC和BD交于点O,连EO,
因为E,O分别是DD1,BD的中点,
所以EO∥BD1
因为EO?平面PAC,BD?平面PAC,
所以直线BD1∥平面ACE.
(2)由题意可得:长方体ABCD-A1B1C1D1中,AB=AD,
所以底面ABCD是正方形,
所以AC⊥BD.
又因为DD1⊥面ABCD,
所以DD1⊥AC.
∵BD?平面BDD1B1,D1D?平面BDD1B1,BD∩D1D=D,
∴AC⊥面BDD1B1
∵AC?平面ACE,
∴平面ACE⊥平面BDD1B1
点评:本题考查证明线面平行、面面垂直的方法,求直线和平面所称的角的大小,找出直线和平面所成的角是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A1B1C1D1中,已知AA1=4,AB=2,E是棱CC1上的一个动点.
(Ⅰ)求证:BE∥平面AA1D1D;
(Ⅱ)当CE=1时,求二面角B-ED-C的大小;
(Ⅲ)当CE等于何值时,A1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A′B′C′D′中(底面是正方形的直棱柱),侧棱AA′=
3
AB=
2
,则二面角A′-BD-A的大小为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)如图,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=
2
a
,E为CC1的中点,AC∩BD=O.
(Ⅰ) 证明:OE∥平面ABC1
(Ⅱ)证明:A1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=A(x0,y0)AB=2,点E、M分别为A1B、C1C的中点.
(Ⅰ)求证:EM∥平面A1B1C1D1
(Ⅱ)求几何体B-CME的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宜昌模拟)如图,在正四棱柱ABCD-A1B1C1D1 中,AB=BC=1,AA1=2.过顶点D1在空间作直线l,使l与直线AC和BC1所成的角都等于60°,这样的直线l最多可作(  )

查看答案和解析>>

同步练习册答案