精英家教网 > 高中数学 > 题目详情

【题目】已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足 =0, =2
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)若斜率为k的直线 l与圆x2+y2=1相切,直线 l与(1)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且 时,求k的取值范围.

【答案】
(1)解:由题意知MQ中线段AP的垂直平分线,

∴点Q的轨迹是以点C,A为焦点,焦距为2,长轴为 的椭圆,

故点Q的轨迹方程是


(2)解:设直线l:y=kx+b,F(x1,y1),H(x2,y2

直线l与圆x2+y2=1相切

联立 ,(1+2k2)x2+4kbx+2b2﹣2=0,

△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,

= = =

为所求


【解析】(1)利用线段的垂直平分线的性质、椭圆的定义即可得出.(2)设直线l:y=kx+b,F(x1 , y1),H(x2 , y2)直线l与圆x2+y2=1相切,可得b2=k2+1.直线方程与椭圆方程联立可得:(1+2k2)x2+4kbx+2b2﹣2=0,△>0,可得k≠0,再利用数量积运算性质、根与系数的关系及其 ,解出即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,函数.

(1)若极大值;

(2)若无零点,求实数的取值范围;

(3)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)对任意实数,,,下列命题中正确的是( )

A.”是“”的充要条件

B.是无理数”是“是无理数”的充要条件

C.”是“”的充分条件

D.”是“”的必要条件

E.”是“”的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)(exa)2(exa)2(a≥0)

(1)f(x)表示成u(其中u)的函数;

(2)f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD外接于圆,AC是圆周角∠BAD的角平分线,过点C的切线与AD延长线交于点E,AC交BD于点F.

(1)求证:BD∥CE;
(2)若AB是圆的直径,AB=4,DE=1,求AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A=[0, ),B=[ ,1],函数f (x)= ,若x0∈A,且f[f (x0)]∈A,则x0的取值范围是(
A.(0, ]
B.[ ]
C.(
D.[0, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别是椭圆C: (a>b>0)的两个焦点,P(1, )是椭圆上一点,且 |PF1|,|F1F2|, |PF2|成等差数列.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F2 , 且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 =﹣ 恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2 sinθ.
(1)求圆C的直角做标方程;
(2)圆C的圆心为C,点P为直线l上的动点,求|PC|的最小值.

查看答案和解析>>

同步练习册答案