精英家教网 > 高中数学 > 题目详情
15.求下列函数的定义域:
(1)y=$\frac{1}{1-lo{g}_{2}x}$;
(2)y=$\sqrt{2-lgx}$.

分析 (1)要使该函数有意义,则需$\left\{\begin{array}{l}{x>0}\\{lo{g}_{2}x≠1}\end{array}\right.$,解该不等式组便可得出该函数的定义域;
(2)要使该函数有意义,则需2-lgx≥0,从而解该不等式即可得出该函数的定义域.

解答 解:(1)解$\left\{\begin{array}{l}{x>0}\\{lo{g}_{2}x≠1}\end{array}\right.$得,x>0,且x≠2;
∴该函数的定义域为{x|x>0,且x≠2};
(2)解2-lgx≥0得,0<x≤100;
∴该函数的定义域为(0,100].

点评 考查函数定义域的概念及其求法,清楚对数的真数需满足大于0,以及对数的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.己知f(1+x)=f(1-x),且f(-x)+f(x)=0,当x∈[1,3]时,f(x)=-x+2:
(1)求x∈[-1,1]时,f(x)的解析式;(2)求证:x=-1为f(x)的一条对称轴;(3)求不等式f(x)≥$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于函数f(x)和g(x)定义运算“*”如下:设D为f(x)和g(x)的公共定义域,对下任意x∈D,当f(x)≤g(x)时,f(x)*g(x)=f(x),当f(x)>g(x)时,f(x)*g(x)=g(x),己知f(x)=$\sqrt{x+3}$,g(x)=3-x,则f(x)*g(x)的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知y=x+$\frac{1}{x}$,则y′|x=1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=tan(2x+$\frac{π}{4}$)的周期是$\frac{π}{2}$,函数y=tan(-2x+$\frac{π}{4}$)的周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,为对数函数的是(  )
A.y=lnxB.x=log327C.y=log-2xD.y=5x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+3,x∈R.
(1)若f(2-x)=f(2+x),求实数a的值?
(2)当x∈[-2,4]时,求函数f(x)的最大值?
(3)当x∈[-2,2]时,f(x)≥a恒成立,求实数a的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中真命题的个数是(  )
①?x∈R,x4>x2
②若p∧q是假命题,则p、q都是假命题;
③命题“?x∈R,x3+2x2+4≤0”的否命题为“?x0∈R,x03+2x02+4>0”
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理)数列{an}的前n项和为Sn,且a1=1,对任意n∈N+,有an+1=$\frac{2}{3}$Sn,则an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{2}{3}×(\frac{5}{3})^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案