精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0.
(1)求角B的大小;
(2)若b=4,△ABC的面积为$\sqrt{3}$,求a+c的值.

分析 (1)利用正弦定理、和差公式化简即可得出.
(2)利用余弦定理、三角形面积计算公式即可得出.

解答 解:(1)∵bcosA+(2c+a)cosB=0,
∴sinBcosA+(2sinC+sinA)cosB=0,化为sin(A+B)+2sinCcosB=0,
∴sinC+2sinCcosB=0,∵sinC≠0,∴cosB=-$\frac{1}{2}$,
∵B∈(0,π),∴B=$\frac{2π}{3}$.
(2)由余弦定理可得:42=a2+c2-2ac$cos\frac{2π}{3}$,可得a2+c2+ac=16.
由S=$\frac{1}{2}$acsin$\frac{2π}{3}$=$\sqrt{3}$,可得ac=4.
∴(a+c)2=16+ac=20,
解得a+c=2$\sqrt{5}$.

点评 本题考查了正弦定理、余弦定理、和差公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-x≥6,命题q:|x-2|≤3;若p∧q与?q同时为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=log2(5-2x),x∈N},B={x|3x(x-2)≤1},则A∩B等于(  )
A.{x|0≤x≤2}B.{x|1≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:方程x2+mx+4=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“a、b∈C,则a-b=0⇒a=b”;
②“若a、b∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b;
③“若a、b、c、d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a、b、c、d∈Q,则a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
④若“x∈R,则|x|<1⇒-1<x<1”类比推出z∈C,则|z|<1⇒-1<z<1.
上述类比中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A(1,2),直线l:x-y-1=0,则点A关于直线l的对称点A'的坐标为(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.四棱锥P-ABCD的底面ABCD是矩形,侧面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,则该四棱锥P-ABCD外接球的体积为(  )
A.$\frac{32π}{3}$B.$\frac{20\sqrt{5}π}{3}$C.8$\sqrt{6}$πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=loga$\frac{1-mx}{x-1}$是奇函数(a>0,a≠1),则m的值等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设$\overrightarrow a,\overrightarrow b$为单位向量,且$\overrightarrow a⊥\overrightarrow b$,若向量$\overrightarrow c$满足$|{\overrightarrow c-({\overrightarrow a+\overrightarrow b})}|=|{\overrightarrow a-\overrightarrow b}|$,则$|{\overrightarrow c}|$的最大值是(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案